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Motivation

Event histories of user activities (aka event streams or user-event
data) are routinely logged on devices including computers and mobile
phones

Typically consist of <event, timestamp, metadata>

As digital devices become more prevalent, these user event histories
are encountered with increasing regularity

Investigators want to determine the likelihood that two event histories
were generated by the same individual
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Related Work

Visualization tools

Tools to assist the investigation of user-generated event logs from
computers and mobile devices (Casey, 2011; Roussev, 2016)
Interactive timeline analysis (Buchholz & Falk, 2005)
Visualization of email histories (Koven et al., 2016)

Automated summarization & session similarity

Analyzing session to session similarities of Internet usage (Gresty et al.,
2016)
Linking user sessions via network traffic information (Kirchler et al.,
2016)
Automated summarization of event data (Kiernan & Terzi, 2009)

Model based approaches

Social network analysis (Eagle et al., 2009)
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My Work

Advised by Padhraic Smyth (and Hal Stern) under CSAFE

Develop statistical methodologies to address questions of interest

Are two event streams from the same individual or not?
Are there unusual and significant changes in behavior?

Develop testbed data sets to evaluate these methodologies

Develop open-source software for use in the forensics community
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Overview

1 The Likelihood Ratio
Feature-based
Score-based

2 Marked Point Processes
Bivariate Point Processes
Summary Statistics

3 Case Study
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The Likelihood Ratio

Probabilistic framework for assessing if two samples came from the
same source or not

LR techniques have seen a great deal of attention in forensics as a
whole

DNA analysis (Foreman et al., 2003)
Glass fragment analysis (Aitken & Lucy, 2004)
Speaker recognition (Gonzalez-Rodriguez et al., 2006)
Fingerprint analysis (Neumann et al., 2007)
Handwriting analysis (Schlapbach & Bunke, 2007)
Analysis of illicit drugs (Bolck et al., 2015)

Chris Galbraith (UCI) Statistical Analysis of User-Event Data August 9, 2017 8 / 25



DNA – LR Gold Standard
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Feature-based Likelihood Ratio
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Score-based Likelihood Ratios

Problem: LR can be difficult to estimate.
Solution: Estimate the probability density function f of a score function
∆ that measures the similarity of the samples X and Y , yielding the
score-based likelihood ratio

SLR∆ =
f (∆(X ,Y )|Hs)

f (∆(X ,Y )|Hd)
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Marked Point Processes

I follow the notation of Illian et al. (2008), who define a marked point
process M as a sequence of random marked points

M = {(tn,m(tn)) : n = 1, 2, . . .}

where m(tn) is the mark of the point tn ∈ Rd

Marks can be continuous or categorical (or both if multiple marks)

Typically found in forestry, sociology, ecology, astronomy, etc.

Chris Galbraith (UCI) Statistical Analysis of User-Event Data August 9, 2017 13 / 25



User-Event Histories as Bivariate Point Processes

Event streams can be viewed as marked point processes with the
following properties

Temporal (i.e., time-stamped events)
Binary marks corresponding to the type of event

We refer to these as bivariate point processes
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Bivariate Process Indices

Coefficient of segregation, S (Pielou, 1977): function of the ratio of
observed probability that the reference point and its nearest neighbor have
different marks to the same probability for independent marks

S(Xi ,Yi ) = 1− pxy + pyx
pxp·y + pyp·x

∈ [−1, 1]
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Bivariate Process Indices

Mingling index, Mk (Illian et al., 2008): mean fraction of points among
the k nearest neighbors of the reference point that have a mark different
than the reference point

Mk(Xi ,Yi ) =
1

k

ni∑
j=1

k∑
`=1

1 [m(tij) 6= m(z`(tij))] ∈ [0, 1]
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Case Study

Data from a 2013-2014 study at UCI that recorded students’ browser
activity for one week (Wang et al., 2015)

Dichotomize browser activity

Reference sample of Facebook-only events
Unidentified sample of non-Facebook events

Considered 28 students with at least 50 events of each type
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Method

Compute bivariate process indices for all N2 pairwise combinations of
user event streams

For each pair {Xi ,Yj : i , j = 1, . . . ,N} evaluate SLRS and SLRM1

with empirical likelihoods estimated from all other data

Leave out all event streams from users i and j
Estimate the probability density of the score function ∆ under each
hypothesis
Set SLR∆ as the ratio of these estimated densities evaluated at
∆(Xi ,Yj)
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Results – Empirical Densities

(a) Segregation (b) Mingling

Same-source density Hs (dashed line)
Different-source density Hd (solid line)
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Results – Classification Accuracy

SLRM1

< 1 > 1 Total
SLRS < 1 2 0 2

> 1 5 21 26 (93%)
Total 7 21 (75%) 28

Table: Known same-source pairs

SLRM1

< 1 > 1 Total
SLRS < 1 698 46 744 (98%)

> 1 12 0 12
Total 710 (94%) 46 756

Table: Known different-source pairs
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Results – ROC Curve
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Conclusions

SLRs based on marked point process indices have potential to
perform well in quantifying strength of evidence for user-event data

Segregation and mingling were discriminative score functions for web
browsing event streams

Results obtained only for specific data set and may not generalize to
others
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Future Work

Other score functions (inter-event times & multiple marks)

Theoretical characterization of limits of detectability

Randomization methods

Obtaining more real-world data

Currently planning additional data collection at UC Irvine
Order of 100 students, months of logged data
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Feature-based Likelihood Ratio

Following the notation of Bolck et al. (2015), define

Evidence E ≡ {X ,Y }
X : set of observations for a reference sample from a known source

Y : set of observations of the same features as X for a sample from
an unidentified source

Hs : same source hypothesis

Hd : different sources hypothesis

Pr(Hs |E )

Pr(Hd |E )︸ ︷︷ ︸
a posteriori odds

=

likelihood ratio︷ ︸︸ ︷
Pr(E |Hs)

Pr(E |Hd)

Pr(Hs)

Pr(Hd)︸ ︷︷ ︸
a priori odds
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Kernel Density Estimation

Kernel function K usually defined as any symmetric density function
that satisfies

1
∫
K (x)dx = 1

2
∫
xK (x)dx = 0

3 0 <
∫
x2K (x)dx <∞

Common kernels: Gaussian, Epanechnikov, point mass (histogram)

Let X = {X1, . . . ,Xn}. Then given K and a bandwidth h > 0, a
kernel density estimator is defined as

f̂n(x) ≡ 1

n

n∑
i=1

1

h
K

(
x − Xi

h

)
Intuition: estimated density at x is the average of the kernel centered
at the observation Xi and scaled by h across all n observations

Choice of kernel really not important, but bandwidth is
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Case Study–Reference Data Set Composition

Compute bivariate process indices [S(Xi ,Yj) and M1(Xi ,Yj)] for all
N2 = 552 = 3025 pairwise combinations of user event streams

For each pairwise combination {Xi ,Yj} and ∆ ∈ {S ,M1}, compute a
“leave-one-out”–like estimate of the score-based likelihood ratio

Ds =
{
{Xk ,Yk} : k ∈ {1, . . . ,N}, k 6= i , k 6= j

}
Dd =

{
{Xk ,Y`} : k , ` ∈ {1, . . . ,N}, k 6= `, k 6= i , k 6= j , ` 6= i , ` 6= j

}
Estimate f̂ (∆|Hs ,Ds) and f̂ (∆|Hd ,Dd) via KDE with the “rule of
thumb” bandwidth (Scott, 1992)
Set SLR∆ as the ratio of these empirical densities evaluated at
∆(Xi ,Yj)
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Results – Evaluation of known same-source streams

SLRM1

- + Total
SLRS - 2 0 0

+ 5 21 26
Total 7 21 28
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Results – Evaluation of known different-source streams

SLRM1

- + Total
SLRS - 698 46 744

+ 12 0 12
Total 710 46 756
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