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e Event histories of user activities (aka event streams or user-event
data) are routinely logged on devices including computers and mobile
phones

o Typically consist of <event, timestamp, metadata>

o As digital devices become more prevalent, these user event histories
are encountered with increasing regularity

@ Investigators want to determine the likelihood that two event histories
were generated by the same individual
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Motivation
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Related Work

@ Visualization tools
e Tools to assist the investigation of user-generated event logs from
computers and mobile devices (Casey, 2011; Roussev, 2016)
o Interactive timeline analysis (Buchholz & Falk, 2005)
o Visualization of email histories (Koven et al., 2016)
@ Automated summarization & session similarity

e Analyzing session to session similarities of Internet usage (Gresty et al.,
2016)

o Linking user sessions via network traffic information (Kirchler et al.,
2016)

o Automated summarization of event data (Kiernan & Terzi, 2009)

@ Model based approaches
o Social network analysis (Eagle et al., 2009)
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Advised by Padhraic Smyth (and Hal Stern) under CSAFE

Develop statistical methodologies to address questions of interest

e Are two event streams from the same individual or not?
e Are there unusual and significant changes in behavior?

Develop testbed data sets to evaluate these methodologies

Develop open-source software for use in the forensics community

NIST  F)csafe

Standards and Technology o Statistics and
ions in Forensic Evidence
U.S. Department of Commerce
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Overview

© The Likelihood Ratio
@ Feature-based
@ Score-based
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The Likelihood Ratio

@ Probabilistic framework for assessing if two samples came from the
same source or not

@ LR techniques have seen a great deal of attention in forensics as a
whole

DNA analysis (Foreman et al., 2003)

Glass fragment analysis (Aitken & Lucy, 2004)

Speaker recognition (Gonzalez-Rodriguez et al., 2006)

Fingerprint analysis (Neumann et al., 2007)

Handwriting analysis (Schlapbach & Bunke, 2007)

Analysis of illicit drugs (Bolck et al., 2015)
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DNA - LR Gold Standard

F1dWYS THILNT

Focus on alleles
known to vary
across the population.

DNA samples from:

crime  suspect suspect suspect
#1 #2 #3

Compute the likelihood (or probability) of observing =

pairs of sequences under two assumptions. I
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Feature-based Likelihood Ratio

DNA samples from:

crime  suspect  suspect  suspect
scena #1 #2 #3

1. Samples are from the same person

= 8 o= Pr({X;, Y}|H,)
=== 2. Samples are from different people
- - = =
Y X, Xo Xj
Likelihood Ratio < 1 Samples from different sourcesJ
PT({XZ', Y}|H3) =1 Inconclusive J
Pr({X;,Y}|Ha)
J >1  Samples from same source J
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Score-based Likelihood Ratios

Problem: LR can be difficult to estimate.

Solution: Estimate the probability density function f of a score function
A that measures the similarity of the samples X and Y, yielding the
score-based likelihood ratio

F(A(X, Y)|Hs)

StRa = HA X, V) Fa)

f(A(X, Y)I Ha) {

f(A(X, Y)I Ho){
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Overview

© Marked Point Processes
@ Bivariate Point Processes
@ Summary Statistics
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Marked Point Processes

o | follow the notation of lllian et al. (2008), who define a marked point
process M as a sequence of random marked points

M = {(tn,m(ty)) :n=1,2,...}

where m(t,) is the mark of the point t, € RY
@ Marks can be continuous or categorical (or both if multiple marks)

@ Typically found in forestry, sociology, ecology, astronomy, etc.
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User-Event Histories as Bivariate Point Processes

@ Event streams can be viewed as marked point processes with the

following properties
e Temporal (i.e., time-stamped events)

e Binary marks corresponding to the type of event

@ We refer to these as bivariate point processes

X
Yi e s v e — ve eee mee o sceme w
X, Y o I T — o oo e emm o . ——
6pm = 12am = 6am = 12pm = 6pm 12am ' 6am

6am 12'pm !
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Bivariate Process Indices

Coefficient of segregation, S (Pielou, 1977): function of the ratio of
observed probability that the reference point and its nearest neighbor have
different marks to the same probability for independent marks

Pxy T Pyx

S(X;, Vi) =1— Py Pec
PxP-y + PyP.x

€ [_la 1]
Low segregation _g—0.90—0—0—0—0—00—>
Time

High segregation —@—@-@@—0—0—0—0—C0—0—>

Time
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Bivariate Process Indices

Mingling index, M (lllian et al., 2008): mean fraction of points among

the k nearest neighbors of the reference point that have a mark different
than the reference point

Mi(X, Y;) = kZZn[m(tu # m(zi(t7))] € [0,1]

j=1 /=1

Low segregation
High mingling —000—0—000e0 »
Time

High segregation
Time
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Overview

© Case Study
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@ Data from a 2013-2014 study at UCI that recorded students’ browser
activity for one week (Wang et al., 2015)

@ Dichotomize browser activity
o Reference sample of Facebook-only events
e Unidentified sample of non-Facebook events

o Considered 28 students with at least 50 events of each type
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e Compute bivariate process indices for all N? pairwise combinations of
user event streams
@ For each pair {X;,Y;:i,j=1,...,N} evaluate SLRs and SLRy,
with empirical likelihoods estimated from all other data
o Leave out all event streams from users i and j
o Estimate the probability density of the score function A under each
hypothesis
o Set SLRA as the ratio of these estimated densities evaluated at
A(Xi’ YJ)
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Results — Empirical Densities

06

(a) Segregation (b) Mingling

Same-source density Hs (dashed line)
Different-source density Hy (solid line)
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Results — Classification Accuracy

SLRwm,
<1 >1 Total
SLRs <1 2 0 2
>1 5 21 26 (93%)
Total 7 21 (75%) 28

Table: Known same-source pairs

SLRw,
<1 >1 Total
SLRs <1 698 46 744 (98%)
>1 12 0 12
Total 710 (94%) 46 756

Table: Known different-source pairs
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Results — ROC Curve
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Conclusions

@ SLRs based on marked point process indices have potential to
perform well in quantifying strength of evidence for user-event data

@ Segregation and mingling were discriminative score functions for web
browsing event streams

@ Results obtained only for specific data set and may not generalize to
others
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Other score functions (inter-event times & multiple marks)
Theoretical characterization of limits of detectability

Randomization methods

Obtaining more real-world data

o Currently planning additional data collection at UC Irvine
e Order of 100 students, months of logged data
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Feature-based Likelihood Ratio

Following the notation of Bolck et al. (2015), define
e Evidence E = {X, Y}
@ X: set of observations for a reference sample from a known source

@ Y: set of observations of the same features as X for a sample from
an unidentified source

@ Hs: same source hypothesis

@ Hy: different sources hypothesis

likelihood ratio

—
Pr(Hs|E)  Pr(E|Hs) Pr(Hs)

Pr(H4|E) ~ Pr(E|Hg) Pr(Hy)
——— ~—
a posteriori odds a priori odds
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Kernel Density Estimation

@ Kernel function K usually defined as any symmetric density function
that satisfies

QO [K(x)dx=1
Q@ [xK(x)dx=0
Q 0< [x?K(x)dx < oo

e Common kernels: Gaussian, Epanechnikov, point mass (histogram)

o Let X ={Xi,...,X,}. Then given K and a bandwidth h > 0, a
kernel density estimator is defined as

A 11 [x=X
fo(x) = — -K
(x) n;h < h )

@ Intuition: estimated density at x is the average of the kernel centered
at the observation X; and scaled by h across all n observations

@ Choice of kernel really not important, but bandwidth is
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Case Study—Reference Data Set Composition

e Compute bivariate process indices [S(X;, Yj) and Mi(X;, Y;)] for all
N? = 552 = 3025 pairwise combinations of user event streams
@ For each pairwise combination {X;, Y;} and A € {S, M1}, compute a
“leave-one-out” —like estimate of the score-based likelihood ratio
o Dy = {{Xe, i} ke {l,... N}, k#ik#j}
o Dy={{Xe,Ye}:kte{l,... N} k#lkF#ik#jLF#iLF#]}
o Estimate f(A|H,,Ds) and f(A|Hg, Dg) via KDE with the “rule of
thumb” bandwidth (Scott, 1992)

o Set SLRA as the ratio of these empirical densities evaluated at
AKX, )
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Results — Evaluation of known same-source streams
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Results — Evaluation of known different-source streams
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