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DNA Samples

crime suspect suspect suspect
scene #1 #2 #3
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DNA Samples

crime suspect suspect suspect
scene #1 #2 #3
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Extraction
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[SWDGE, 2019;
Roussev, 2016;
Casey, 2011]
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Probabilistic

conclusions
regarding
source,
e.g.,

Likelihood Ratio

Extraction
—-

[SWDGE, 2019;
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BACKGROUND

Statistical Approaches for Evaluating
Forensic Evidence
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Goal
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Goal

Assess the likelihood of observing

Unknown A B Known source
source sample ) sample

Under two competing hypotheses

Hs: (A, B) came from the same source g = &3

z
3

Ha: (A, B) came from the different sources g -

. 4
SN 4
%), \(o/
=7
A_D\
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Wait...why aren’t we interested in the probability
of the source hypothesis given the evidence?
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Pr(H,|A,B,I)

posterior odds
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Wait...why aren’t we interested in the probability
of the source hypothesis given the evidence?

likelihood ratio
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31



likelihood ratio
Pr(H,|A,B,I) Pr(A,B|H,I)  Pr(H,|I)

Pr(H,|A, B, 1) PrA,B|H,I)  Pr(H,|I)

posterior odds prior odds
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“Weight of Evidence”
[Pierce, 1878]

“Strength of Evidence”

likelihood ratio
Pr(A,B|H,I)

Pr(A,B|H, 1)
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The Likelihood Ratio

Widely accepted as a “logically defensible way” to asses the
strength of evidence (wilis et al., 2016]
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The Likelihood Ratio

Widely accepted as a “logically defensible way” to asses the
strength of evidence (wilis et al., 2016]

Has been applied in a variety of forensic disciplines

DNA [aitken & Stoney, 1991; Evett & Weir, 1998: Steele & Balding, 2014]
Fingerprints [Champod & Evett, 2001]
Handwriting (Bozza et al., 2008]

Speaker Recognition [champod & Meuwly, 2000]

Studies demonstrating its understanding

I\/Iisconceptions [Martire et al., 2013, Thompson and Newman, 2015, Thompson et al., 2018]

Verbal Equivalents (e AFsp 2009]
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Why not always use the LR?
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Why not always use the LR?

Complexity: Evidence can be high-dimensional
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Why not always use the LR?

Complexity: Evidence can be high-dimensional

Feature Selection: Wide variety of features to consider

[Fine, 2016]

43 [Stern, 2017]



Why not always use the LR?
Complexity: Evidence can be high-dimensional
Feature Selection: Wide variety of features to consider

Appropriate Probability Models: Must describe variation within a
given source and between different sources

O _T 3
A = Ha. .

3

44 [Stern, 2017]



Why not always use the LR?

Complexity: Evidence can be high-dimensional

Feature Selection: Wide variety of features to consider

Appropriate Probability Models: Must describe variation within a
given source and between different sources

Reference Population: Difficult to identify a relevant reference
population to estimate model parameters & perform validation
studies

45 [Stern, 2017]



Score-based Approaches

Measure similarity between A and B via a score function
A(A, B)
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Score-based Approaches

Measure similarity between A and B via a score function
A(A, B)

Score-based Likelihood Ratio: Compute a LR for the observed score

------ Same-Source — Different-Source

g(A(A,B) =0l H ,]) g(A(A, B) =8l Hg, 1) —
. g(A(A’B) =0 Hda I) g(A(A, B) =0l H, 1)
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Score-based Approaches

Measure similarity between A and B via a score function
A(A, B)
Score-based Likelihood Ratio: Compute a LR for the observed score

_ §(AA,B)=5|H,.I)

SLR, =
g(A(A,B) =0|Hy 1)

Gaining popularity in a variety of forensic disciplines

Chemical Concentrations [Boick et al., 2015]

Speaker Recognition [Gonzalez-Rodriguez et al., 2007]
Fingerprints [Alberink et al., 2013; Neumann et al., 2015]

Handwriting [Hepler et al., 2012]
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Score-based Approaches

Measure similarity between A and B via a score function
A(A, B)
Score-based Likelihood Ratio: Compute a LR for the observed score

 g(AA,B) = §|H,I)
2 g(A(A,B) = §|Hy 1)

SLR

CONTRIBUTION CHAPTER #3 [Galbraith, Smyth & Stern, JRSSA 2020]
Coincidental Match Probability:
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Score-based Approaches

Measure similarity between A and B via a score function
A(A, B)
Score-based Likelihood Ratio: Compute a LR for the observed score
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Score-based Approaches

Measure similarity between A and B via a score function
A(A, B)
Score-based Likelihood Ratio: Compute a LR for the observed score

 g(AA,B) = §|H,I)
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Score-based Approaches

Measure similarity between A and B via a score function
A(A, B)
Score-based Likelihood Ratio: Compute a LR for the observed score
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Coincidental Match Probability: Probability that different-source

evidence has a more extreme score than the observed score
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Score-based Approaches

Measure similarity between A and B via a score function
A(A, B)
Score-based Likelihood Ratio: Compute a LR for the observed score

_ §(AA,B)=5|H,.I)

SLR, =
g(A(A,B) =0|Hy 1)

CONTRIBUTION CHAPTER #3 [Galbraith, Smyth & Stern, JRSSA 2020]
Coincidental Match Probability: Probability that different-source

evidence has a more extreme score than the observed score

------ Same-Source ~ —— Different-Source

CMP, = Pr(A(A,B) < §|H,, 1)
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Evidence Evaluation Approaches

Likelihood Ratio: Models evidence directly

Pr(A,B|H,,I)
~ Pr(A,B|H, )

LR

Score-based Likelihood Ratio: Models low-dimensional summary of
the evidence, A(A, B)

_ 8(A(4,B) =8| Hy, D)

SLR, =
g(A(A,B) = 0|Hy 1)

CONTRIBUTION CHAPTER #3 [Galbraith, Smyth & Stern, JRSSA 2020]
Coincidental Match Probability: Focus on different-source score

distribution; similar to RMP, but we don’t determine a “match” first
CMP, = Pr(A(A,B) < 5|Hd, I)
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Empirical Evaluation Techniques
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Validation Data: Sample from relevant reference population

i::@;k known same-source evidence

9;? known different-source evidence
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Empirical Evaluation Techniques

Validation Data: Sample from relevant reference population

i::@;k known same-source evidence

9;? known different-source evidence

Classification Performance: TP/FP rates, AUC

Calibration: Same-source evidence should have larger LR/SLR
(or smaller CMP) values than different-source evidence, e.g.,

\—>LR € DI, LR, € D% = LR; < LR,
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Empirical Evaluation Techniques

Validation Data: Sample from relevant reference population

i::@;k known same-source evidence

9;? known different-source evidence

Classification Performance: TP/FP rates, AUC

Calibration: Same-source evidence should have larger LR/SLR
(or smaller CMP) values than different-source evidence

Information-theoretic Evaluation: How much does the LR/SLR
value reduce the uncertainty regarding the source hypotheses?

I—) Empirical cross-entropy (Brimmer & du Preez, 2006; Ramos, 2007]
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Empirical Cross-Entropy

Cross-entropy: %, p(H,|E) = — E OE.H) log P(H | E)
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Empirical Cross-Entropy

Cross-entropy: %, p(H,|E) = — E OE.H) log P(H | E)

1, H, true
0, H,true

OH,|E) = {

Target Posterior Posterior (from evidence evaluation)

i:iUsing above target posterior, % , p(H, | E) = Dy p(H, | E)
Equivalent to Bayes risk for logarithmic l0Ss [Proof in CHAPTER #2]

Empirical Cross-entropy: Estimate %, p(H, | E) by averaging
over validation data

\—>Repeat over a range of priors P(H,)
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ECE Plot
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ECE Plot

Empirical cross-entropy
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ECE Plot

o o
(@) oo

Empirical cross-entropy
=
~

,.E\\ —— LR values, 0.811
LN == [ R=] always. 1.0

------ PAYV Calibrated, 0.657

Isotonic

Regression

[Zadrozny & Elkan, 2002]
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Aside: Calibration via Isotonic Regression

Calibrated
P(H | E)

0.8 .
@ Same-source Evidence
@ Different-source Evidence
0.6
|deal Posterior
04 [ ] PAV Posterior
0.2
0
0 02 04 06 08 1

P(H,| E)

71 [Barlow, 1972]
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Aside: Calibration via Isotonic Regression

@ Same-source Evidence

@ Different-source Evidence

Calibrated
P(H | E)

|deal Posterior
[ ] PAV Posterior

P(H,| E)

76 [Barlow, 1972]



ECE Plot

1.0 PRrhN = LR values, 0.811
== | R=] always, 1.0

------ PAYV Calibrated, 0.657
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ECE Plot
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CONTRIBUTION

Quantifying the Strength of Geolocated
Event Evidence

CHAPTER #4 [Galbraith, Smyth & Stern, Digital Investigation 2020]
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Revisiting the LR

o_ PrABIH) _ Pr(BIAH) Pr(A|H,)

~ Pr(A,B|H)) Pr(B|A,H) Pr(A|H)
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Revisiting the LR

Pr(A|H,) = Pr(A|H;) = Pr(A)

. PrA,B|H) Pr(B|A,H) 1
~ Pr(A,B|H,) Pr(B|A,H)

82 [Stern, 2017]



Revisiting the LR

Pr(A,B|H) Pr(B|A,H,)

~ Pr(A,B|H,) |Pr(B|A,H)

LR

Pr(B|A,H,;) = Pr(B|H,)

83 [Stern, 2017]



Revisiting the LR

_ f(BIAH)

= LR =
f(B|H,)
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J(B|H,)

fB|H,) = HfKD<sb D)

]_

Adaptive Bandwidth
Kernel Density Estimators

[Breiman et al., 1977]




fBIAHy) = [ | hixo(s/ 1A, 2, )
f(B|A, H,) =

[Lichman & Smyth, 2014]
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fB1A.H) = | | fikn(s? 14,2, )

j=1

fMKD(Sjb |A, D, a) = afKD(S].b |A)

Individual
Component

[Lichman & Smyth, 2014]
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fB1A.H) = | | fikn(s? 14,2, )

j=1

fukp(7 1A, D, @) = afip(s? | A)+(1=a)fip(s) | D)

Individual Population
Component Component

[Lichman & Smyth, 2014]

fB1Hy) = | | fxn(s' 1 2)

j=1
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fB1A.H) = | | fikn(s? 14,2, )

j=1

fMKD(Sjb |A, D, a) = afKD(Sjb |A)+(1—a)fKD(sjb | D)

Mixing Individual Population
Weight  Component Component

[Lichman & Smyth, 2014]

a = 0.8
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fB1A.H) = | | fikn(s? 14,2, )

j=1

fukp(7 1A, D, @) = afip(s? | A)+(1=a)fip(s) | D)

Mixing Individual Population
Weight  Component Component

VN

fB1Hy) = | [ fin(s? | 2) — _JB1AH)
= f(B| H,)
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What about score-based approaches?
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Score Functions

Techniques to characterize spatial point patterns generally fall into
two Categories [Haggett, 1977]
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Score Functions

Techniques to characterize spatial point patterns generally fall into
two Categories [Haggett, 1977]

i:; Distance-based
Area-based

Use distance-based score functions A(A, B) to quantify the
similarity of the points within the sets A and B

i:; Average nearest-neighbor distance D, . (B, A | Q)

min

Earth-mover’s distance EMD(B, A | Q°, Q%)

Incorporate area-based information via weights Q¢, Q°
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Score Functions

Earth-mover’s distance EMD(B, A | Q°, Q%)

Incorporate area-based information via weights Q¢, Q°
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Earth-mover’s distance
EMD(B, A | QF, Q%

99 [Cohen, 1999]



Earth-mover’s distance
EMD(B, A | QF, Q%

100 [Cohen, 1999]
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Case Study

Collected Twitter data from May 2015 to Feb 2016
i:; Orange County, CA
Manhattan, New York, NY

A and B are consecutive months from the same account

Region Accounts Visits in A Visits in B

0C 6,714 44,310 (6.6) 38,697 (5.8)
NY 13,523 72,799 (5.4) 65,852 (4.9)
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Case Study

Collected Twitter data from May 2015 to Feb 2016
i:; Orange County, CA
Manhattan, New York, NY

A and B are consecutive months from the same account

Region Accounts Visits in A Visits in B

0C 6,714 44,310 (6.6) 38,697 (5.8)
NY 13,523 72,799 (5.4) 65,852 (4.9)

Results based on stratified sample based on n, and n,, for different-
source evidence
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Results

Region Method! TP Rate? FP Rate2 AUC
LR 0.380 0.038 0.845

OC SLRemp 0.614 0.162 0.783
CMPemp 0.448 0.208 0.784

LR 0.285 0.089 0.768

NY SLRemp 0.511 0.235 0.685
CMPemp 0.283 0.161 0.686

(1) LR with a(n,) weights; SLRemp & CMPemp with account weights
(2) LR & SLR threshold is 1; CMP threshold is 0.05
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Results

Region Method’ TP Rate? FP Rate? AUC
LR 0.380 0.038 0.845
OC SLREmD 0.614 0.162 0.783
CMPemp 0.448 0.208 0.784
LR 0.285 0.768
NY SLRemD 0.511 0.685
CMPemp 0.283 0.686
(1) LR with a(n,) weights; SLRemp & CMPemp with account weights
(2) LR & SLR threshold is 1; CMP threshold is 0.05
OC NY
o 03 N CMP o 03 I CMP
= LR = LR
Q‘; 02 SLR Qc:) 0 SLR
0.0 - —— 0.0 - [
Low Medium High Low High

Amount of Data
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Future Directions and Summary
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Future Directions

Reference Data: Collect & share relevant digital data amongst law
enforcement & researchers, e.g., start to build CODIS-like databases.

Assessment Techniques: Classification performance & calibration
are good ways to assess a method, but “misclassified” evidence
complicates things...is there a systematic way to handle this?

Discovery: Finding the most likely known source in a database
given an unknown source sample...quickly.

Model Extensions:
i:; Spatio-temporal models
Incorporating event metadata

17



Summary

Statistical approaches play a key role in the forensic analysis of
a wide variety of evidence.

Digital evidence is lagging behind other forensic disciplines.

Contributions presented:

Coincidental Match Probability: Novel technique for
guantifying strength of evidence

Geolocated Event Data: Framework for estimating LRs and
iInvestigation of appropriate score functions
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Questions
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Appendix




1
Cross- = — Z Q(H, = k) [q(e | H, = k)log P(H, = k| e)de.
Entropy k=0

Log Loss L |Q(H,|e), P(H,|e)| = — O(H, | e)log P(H,|e) — (1 — Q(H, | e))log(1 — P(H,|e))

1
Bayes Risk  Ry(P) = ) OQ(H, = WE gL [O(H, | €), P(H, | )]

k=0
1
— X 0H, = | ate #, = Klog P(H, = k| ex
k=0
=%y p0|E)
Empirical _ P(Hy) 1 - P(H)
Cross-Entropy FCF = N Z log P(H,|e;) — N Z log(1 — P(H,|e))

€D} JED]
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Region Weight TP@Q1l FP@Ql AUC

0.80 0.340 0.026 0.787

OC a(ng) 0.380 0.038 0.845

a(n.y,p,¢) 0375 0.037 0.817

0.80 0.251 0.067 0.711

NY a(ng) 0.285 0.089 0.768

a(ngy,p,¢) 0.282 0.088 0.734

LR
Region A  Weights TPQl FP@Ql AUC Region A  Weights TP@0.05 TP@0.01 AUC
Dypin  Uniform 0.628 0.202 0.768 D,pin  Uniform  0.389 0.187  0.771
Dpin  Account 0.610 0.171 0.774 Dopin Account  0.441 0.236  0.776
D,in  Visit  0.611 0.180 0.768 Din  Visit 0.415 0.209  0.771
OC EMD Uniform 0.654 0.197 0.790 OC  EMD Uniform  0.397 0.154  0.791
EMD Account 0.614 0.162 0.783 EMD Account  0.448 0.208  0.784
EMD  Visit  0.602 0.169 0.774 EMD  Visit 0.425 0.182  0.775
D, i Uniform 0.508 0.287 0.656 D,in Uniform 0.242 0.153 0.656
D, Account 0.494 0.254 0.666 D,in  Account  0.269 0.186  0.667
D, Visit 0493 0.257 0.663 Din  Visit 0.264 0.179  0.665
NY EMD Uniform 0.530 0.253 0.686 NY EMD Uniform  0.265 0.139  0.687
EMD Account 0.511 0.235 0.685 EMD Account 0.283 0.161 0.686
EMD  Visit  0.504 0.234 0.679 EMD  Visit 0.276 0.156  0.681
SLR CMP
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