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Why not always use the LR?

Complexity: Evidence can be high-dimensional 

Feature Selection: Wide variety of features to consider

Appropriate Probability Models: Must describe variation within a 
given source and between different sources

[Stern, 2017]

Reference Population: Difficult to identify a relevant reference 
population to estimate model parameters & perform validation 
studies
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Evidence Evaluation Approaches

Coincidental Match Probability: Focus on different-source score 
distribution; similar to RMP, but we don’t determine a “match” first

CMPΔ = Pr(Δ(A, B) < δ |Hd, I)

Likelihood Ratio: Models evidence directly

LR =
Pr(A, B |Hs, I)
Pr(A, B |Hd, I)

SLRΔ =
g(Δ(A, B) = δ |Hs, I)
g(Δ(A, B) = δ |Hd, I)

Score-based Likelihood Ratio: Models low-dimensional summary of 
the evidence,  Δ(A, B)
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LRs ∈ 𝒟*s , LRd ∈ 𝒟*d ⇒ LRd < LRs
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Information-theoretic Evaluation: How much does the LR/SLR 
value reduce the uncertainty regarding the source hypotheses?

Classification Performance: TP/FP rates, AUC

Empirical cross-entropy [Brümmer & du Preez, 2006; Ramos, 2007]
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Kernel Density Estimators
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What about score-based approaches?
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Score Functions

Techniques to characterize spatial point patterns generally fall into 
two categories [Haggett, 1977]
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B
A

[Cohen, 1999]

Earth-mover’s distance 
EMD(B, A |Ωb, Ωa)

99



Earth-mover’s distance 
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B
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[Cohen, 1999]100



Weights Ωa, Ωb

[Lichman, 2017]
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Visits

Accounts

ωj ∝ [nacc(ℓ(sj))]−1

ωj ∝ [nvis(ℓ(sj))]−1
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Case Study
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Collected Twitter data from May 2015 to Feb 2016

Orange County, CA
Manhattan, New York, NY

 and  are consecutive months from the same accountA B

Results based on stratified sample based on  and  for different-
source evidence

na nb



Results
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Region Method1 TP Rate2 FP Rate2 AUC

OC
LR 0.380 0.038 0.845

SLREMD 0.614 0.162 0.783
CMPEMD 0.448 0.208 0.784

NY
LR 0.285 0.089 0.768

SLREMD 0.511 0.235 0.685
CMPEMD 0.283 0.161 0.686

(1) LR with  weights; SLREMD & CMPEMD with account weights
(2) LR & SLR threshold is 1; CMP threshold is 0.05

α(na)
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LR;  weightsα(na) ; account weightsSLREMD



109

OC
NY
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Error Analysis
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 trueHs  trueHd

*OC data; LR with  weightsα(na)
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Future Directions and Summary
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Future Directions

117

Reference Data: Collect & share relevant digital data amongst law 
enforcement & researchers, e.g., start to build CODIS-like databases.

Assessment Techniques: Classification performance & calibration 
are good ways to assess a method, but “misclassified” evidence 
complicates things…is there a systematic way to handle this? 

Discovery: Finding the most likely known source in a database 
given an unknown source sample…quickly.

Model Extensions:

Spatio-temporal models
Incorporating event metadata



Summary
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Statistical approaches play a key role in the forensic analysis of 
a wide variety of evidence.

Digital evidence is lagging behind other forensic disciplines.

Contributions presented:

Coincidental Match Probability: Novel technique for 
quantifying strength of evidence
Geolocated Event Data: Framework for estimating LRs and 
investigation of appropriate score functions 
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𝒰Q||P(Hs |E) = − 𝔼Q(E,Hs) log P(Hs |E)

= −
1

∑
k=0

Q(Hs = k)∫ q(e |Hs = k)log P(Hs = k |e)de .

𝒰Q||P(Hs |E) = 𝒰Q(Hs |E) + DQ||P(Hs |E)

Cross-
Entropy

Log Loss

Risk

Bayes Risk

L [Q(Hs |e), P(Hs |e)] = − Q(Hs |e)log P(Hs |e) − (1 − Q(Hs |e))log(1 − P(Hs |e))

R(Q, P) = 𝔼q(E|Hs)L [Q(Hs |E), P(Hs |E)] = ∫ q(e |Hs)L [Q(Hs |e), P(Hs |e)] de

RB(P) =
1

∑
k=0

Q(Hs = k)𝔼q(E|Hs=k)L [Q(Hs |e), P(Hs |e)]

= −
1

∑
k=0

Q(Hs = k)∫ q(e |Hs = k)log P(Hs = k |e)de

= 𝒰Q||P(θ |E)

Empirical 
Cross-Entropy ECE = −

P(Hs)
N*s ∑

i∈𝒟*s

log P(Hs |ei) −
1 − P(Hs)

N*d ∑
j∈𝒟*d

log(1 − P(Hs |ej))
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