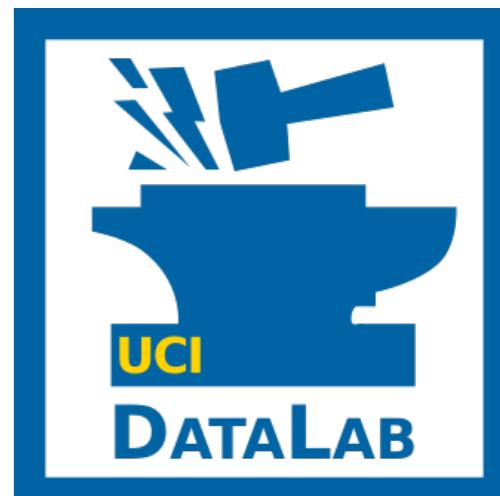

Statistical Methods for the Forensic Analysis of User-Event Data

Christopher Galbraith

PhD Defense
5.28.20

UCIRVINE
UNIVERSITY of CALIFORNIA • IRVINE



The material presented here is based upon work supported by the National Institute of Science and Technology under Award No. 70NANB15H176. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Institute of Science and Technology, nor of the Center for Statistics and Applications in Forensic Evidence.

Publications

- i C. Galbraith, P. Smyth, H. S. Stern. ***Statistical methods for the forensic analysis of geolocated event data.*** Digital Investigation 2020.
- ii C. Galbraith, P. Smyth, H. S. Stern. ***Quantifying the association between discrete event time series with applications to digital forensics.*** J R Stat Soc Series A 2020.
- iii C. Galbraith, P. Smyth. ***Analyzing user-event data using score-based likelihood ratios with marked point processes.*** Digital Investigation 2017.

Publications

- i C. Galbraith, P. Smyth, H. S. Stern. *Statistical methods for the forensic analysis of geolocated event data*. Digital Investigation 2020.
- ii C. Galbraith, P. Smyth, H. S. Stern. *Quantifying the association between discrete event time series with applications to digital forensics*. J R Stat Soc Series A 2020.
- iii C. Galbraith, P. Smyth. *Analyzing user-event data using score-based likelihood ratios with marked point processes*. Digital Investigation 2017.

- 1 Introduction
- 2 Computing Strength of Evidence with the Likelihood Ratio
- 3 Score-based Approaches for Computing Strength of Evidence ii
- 4 Spatial Event Data i
- 5 Temporal Event Data ii iii
- 6 Discussion on Future Directions

Dissertation

Publications

i C. Galbraith, P. Smyth, H. S. Stern. ***Statistical methods for the forensic analysis of geolocated event data.*** Digital Investigation 2020.

ii C. Galbraith, P. Smyth, H. S. Stern. ***Quantifying the association between discrete event time series with applications to digital forensics.*** J R Stat Soc Series A 2020.

iii C. Galbraith, P. Smyth. ***Analyzing user-event data using score-based likelihood ratios with marked point processes.*** Digital Investigation 2017.

Dissertation

- 1 Introduction
- 2 Computing Strength of Evidence with the Likelihood Ratio
- 3 Score-based Approaches for Computing Strength of Evidence ii
- 4 Spatial Event Data i
- 5 Temporal Event Data ii iii
- 6 Discussion on Future Directions

Outline

1 Motivation

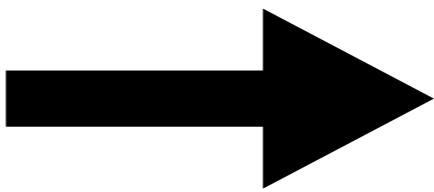
2 Quantifying Strength of Evidence

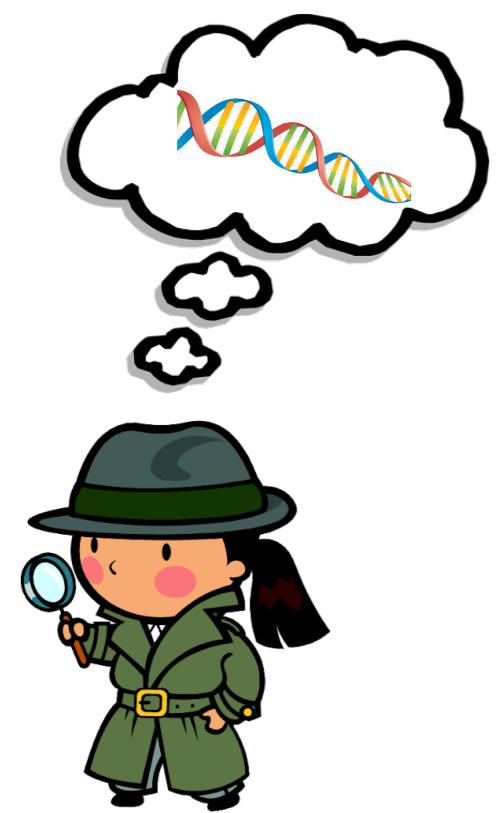
3 Empirical Evaluation Techniques

4 Application to Geolocated Event Data

5 Future Directions and Conclusions

Motivation







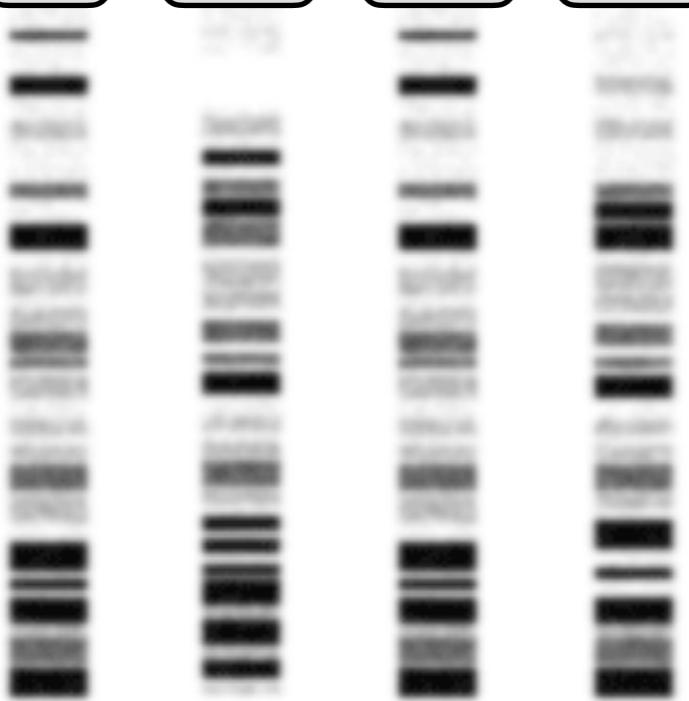
DNA Samples

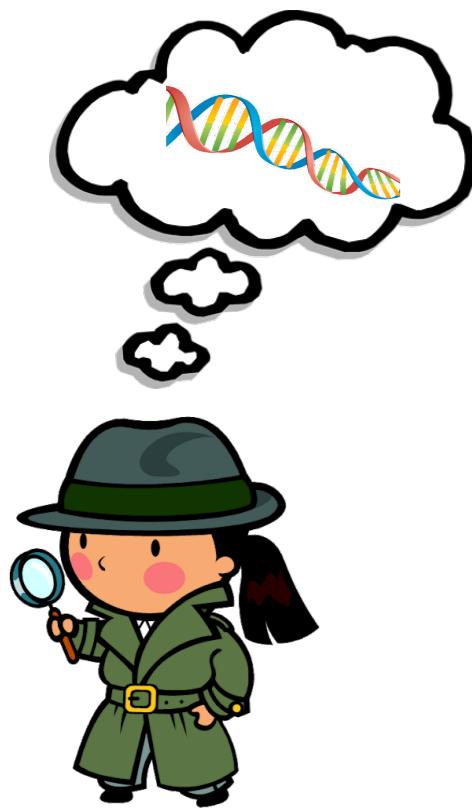
crime scene

**suspect
#1**

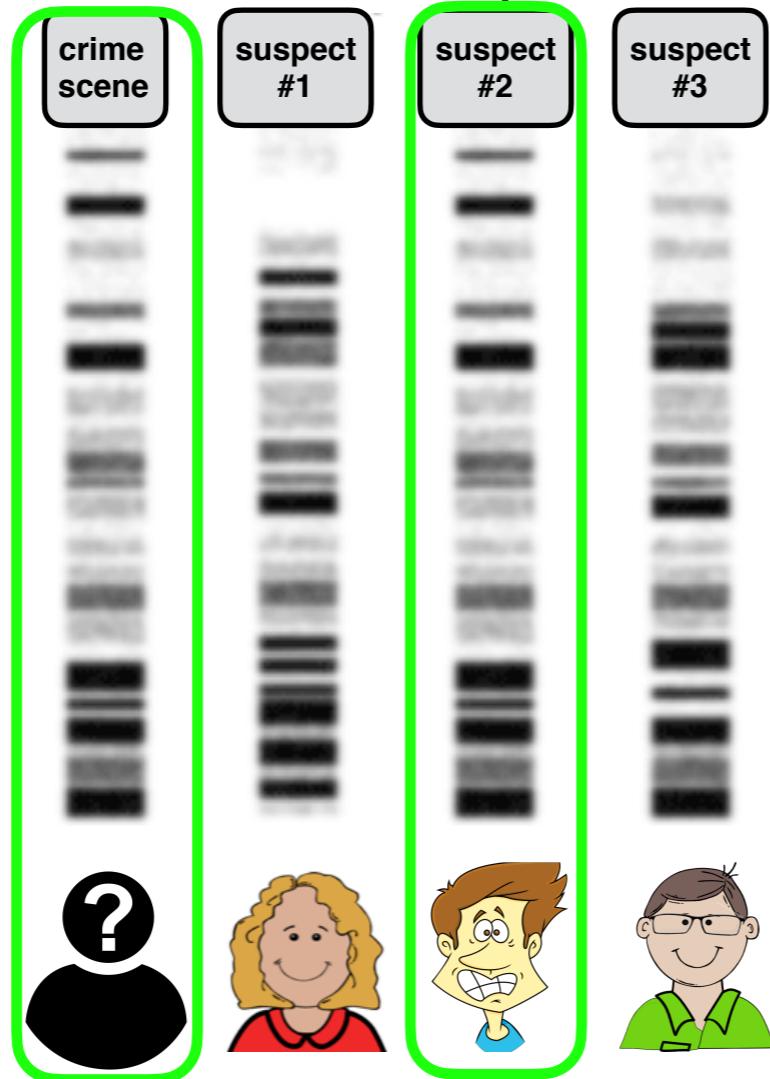
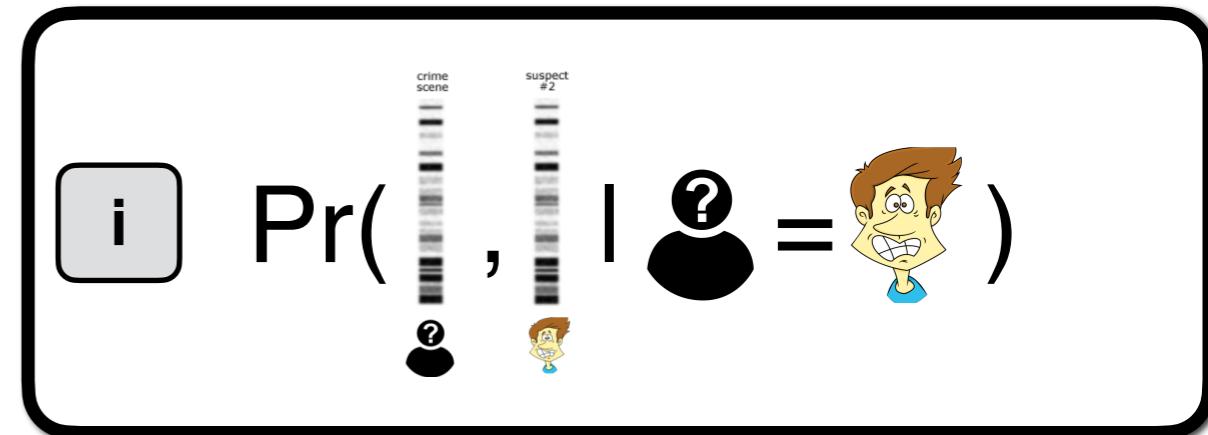
**suspect
#2**

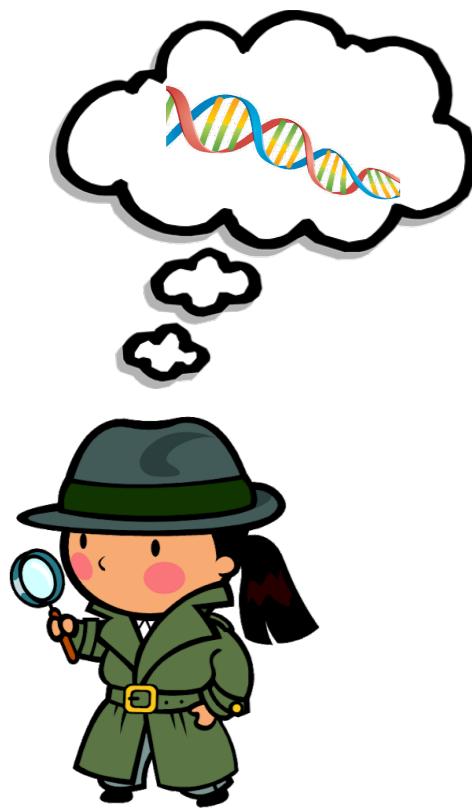
**suspect
#3**



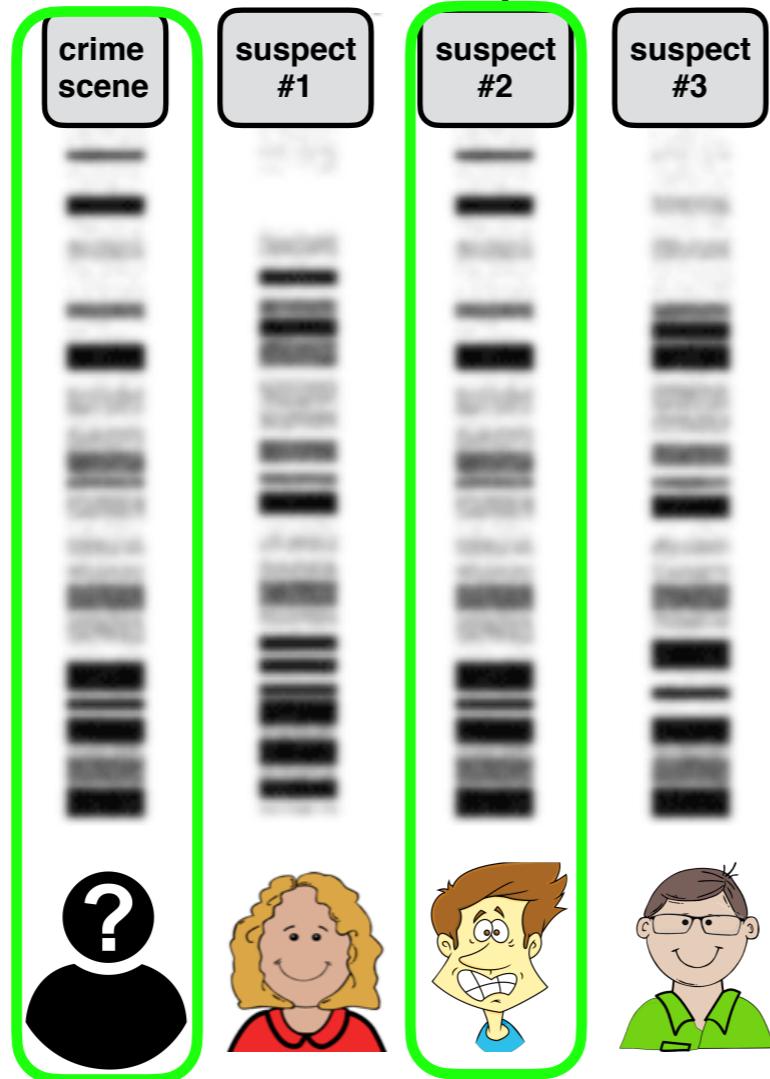
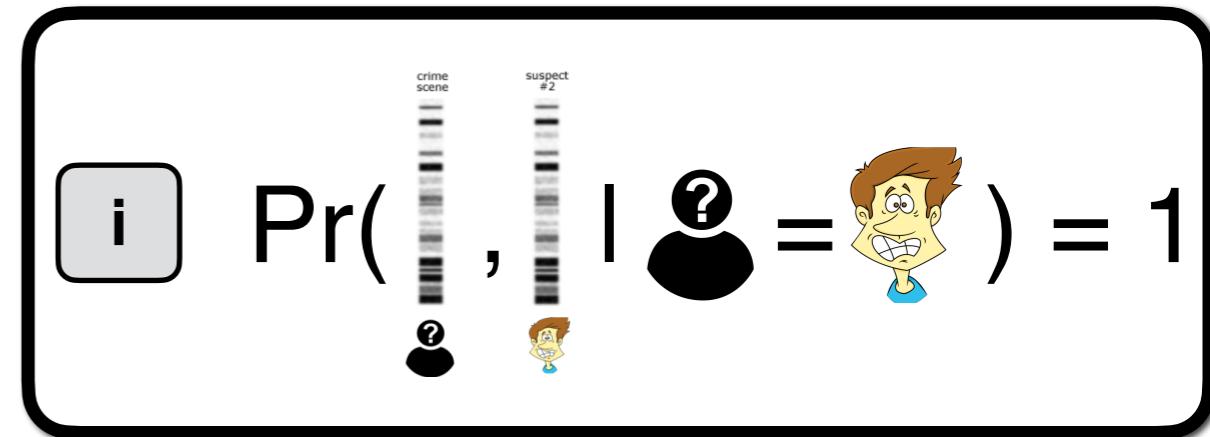


DNA Samples

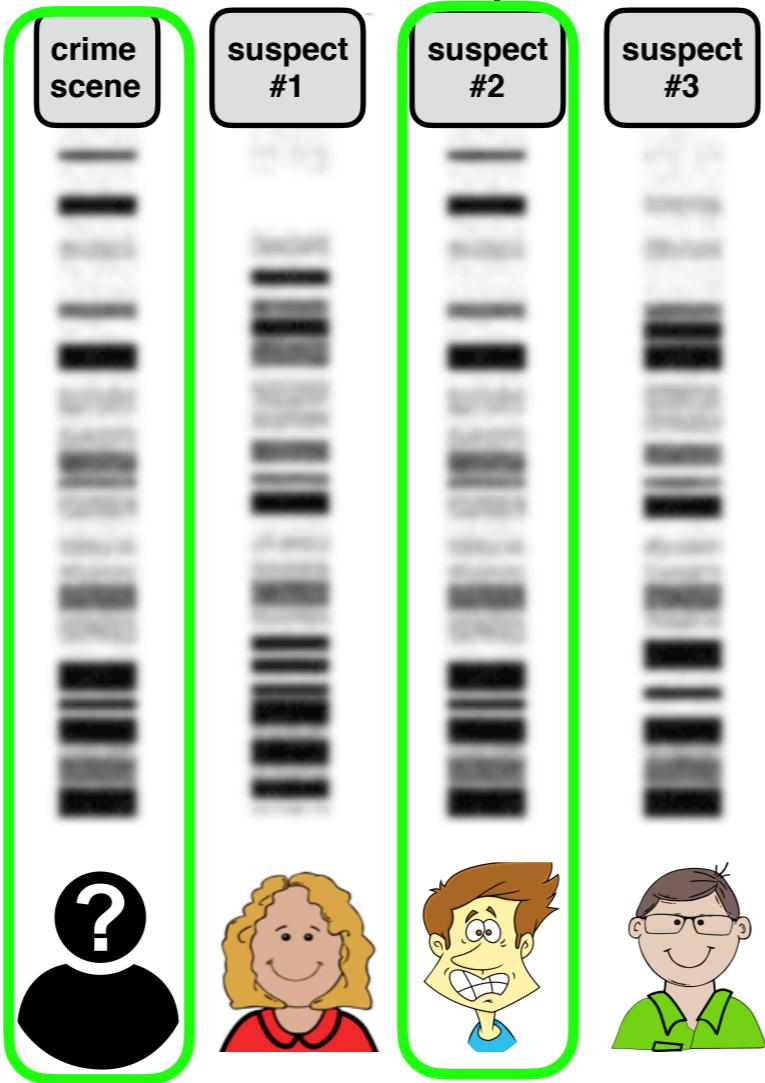
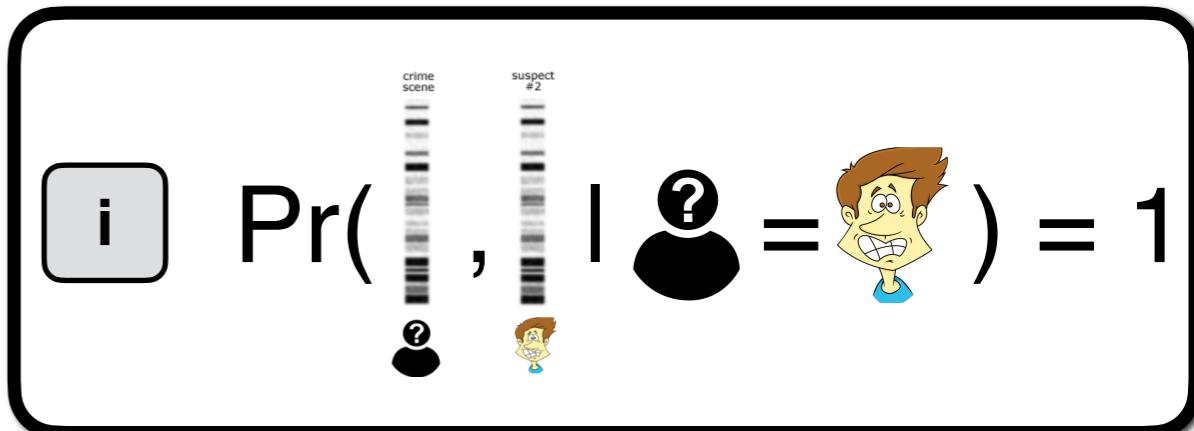
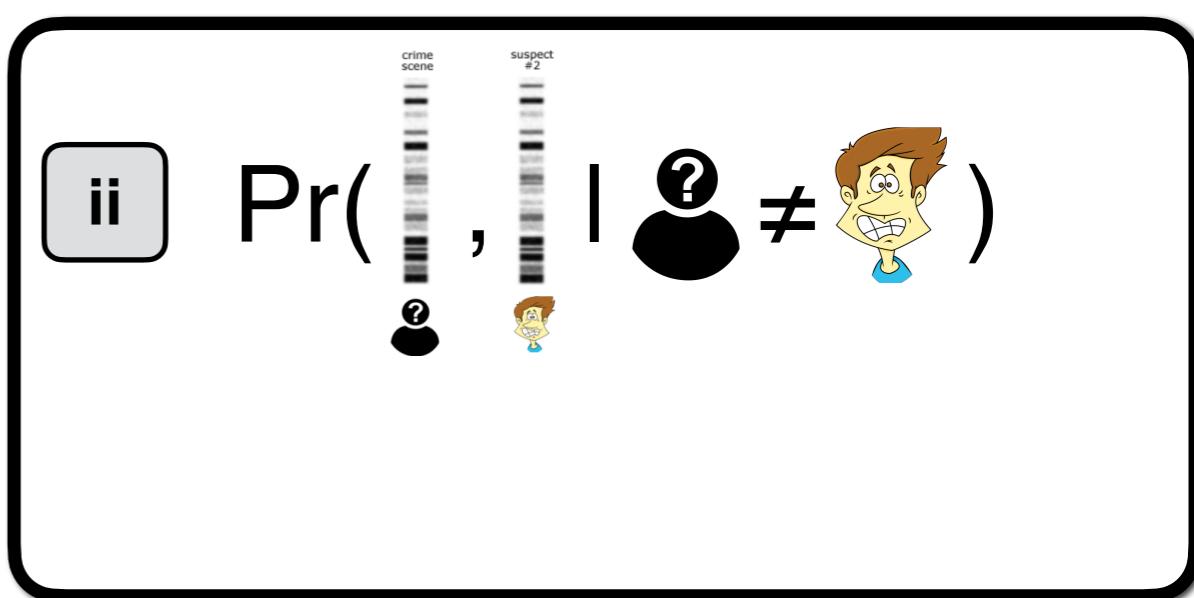




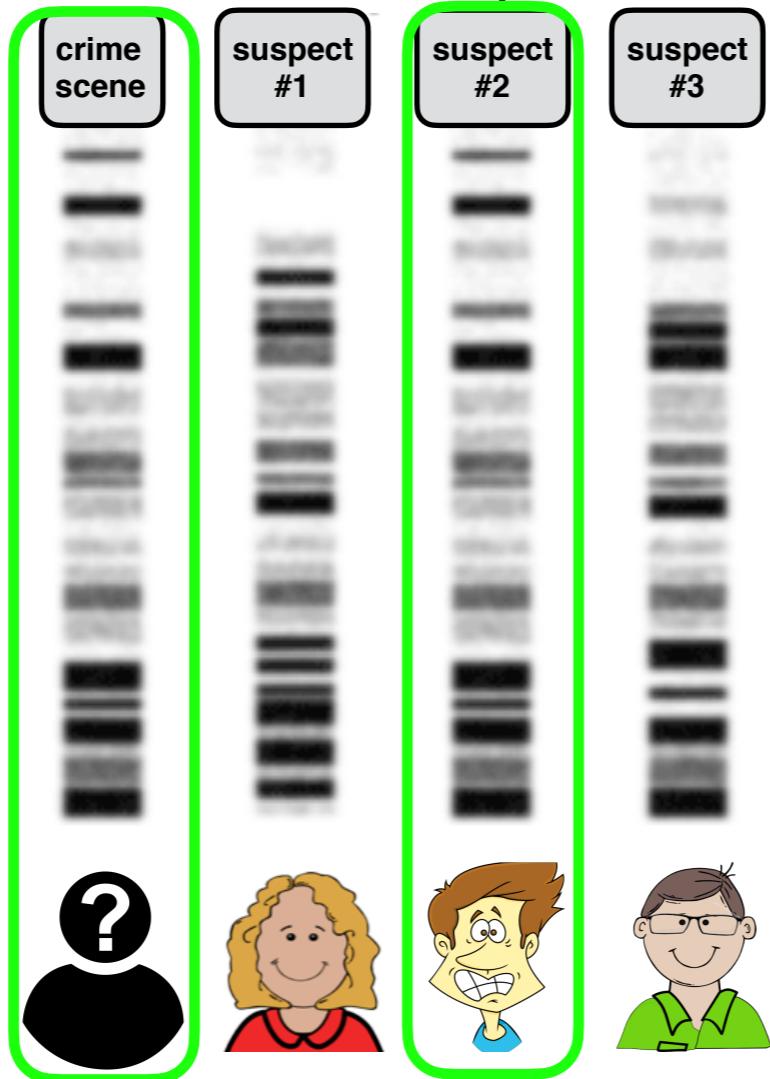
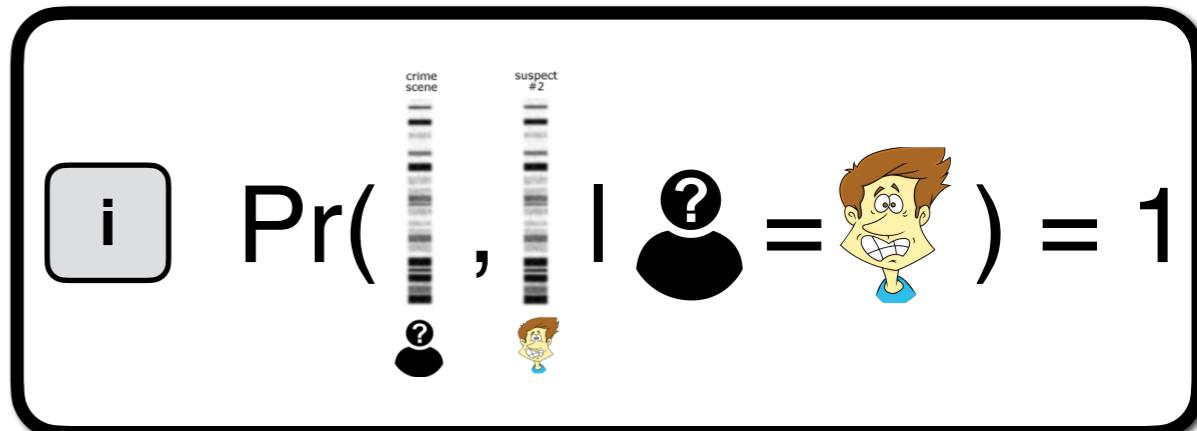
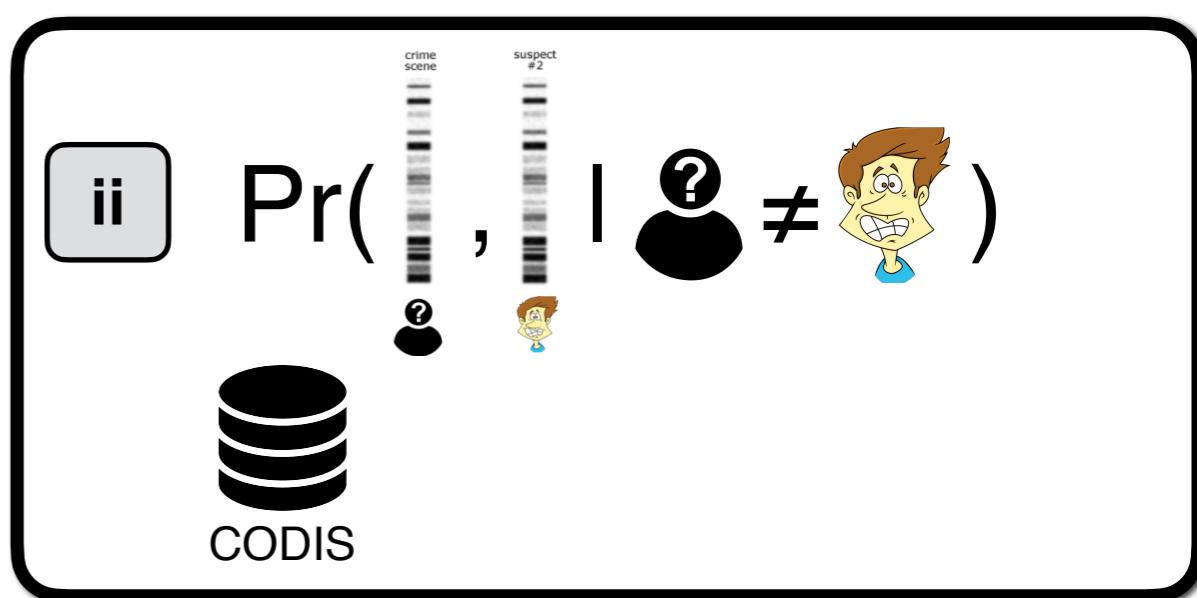
DNA Samples



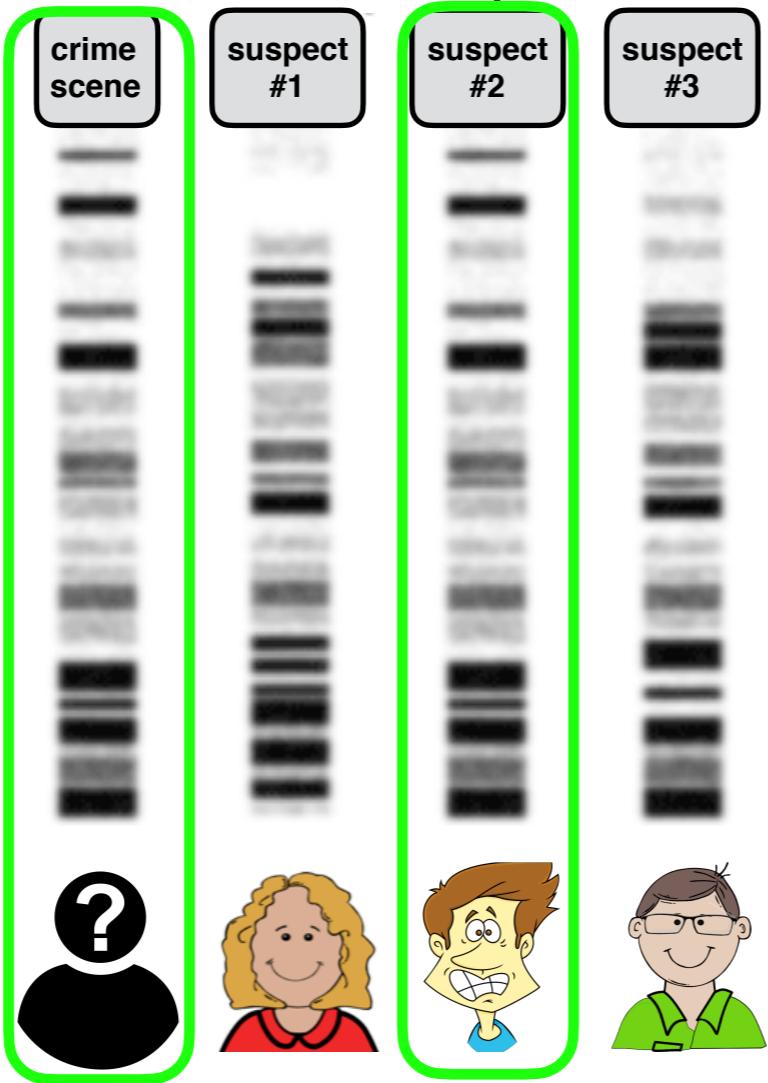
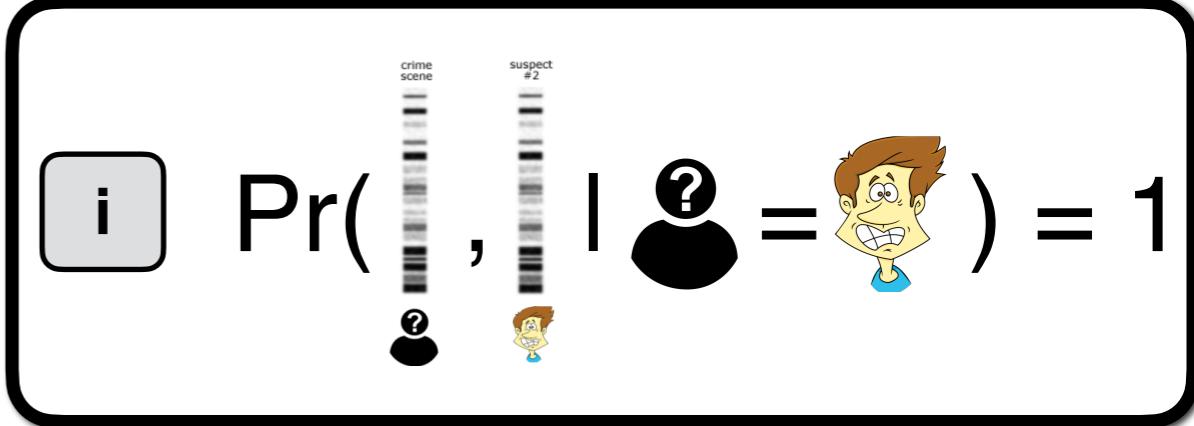
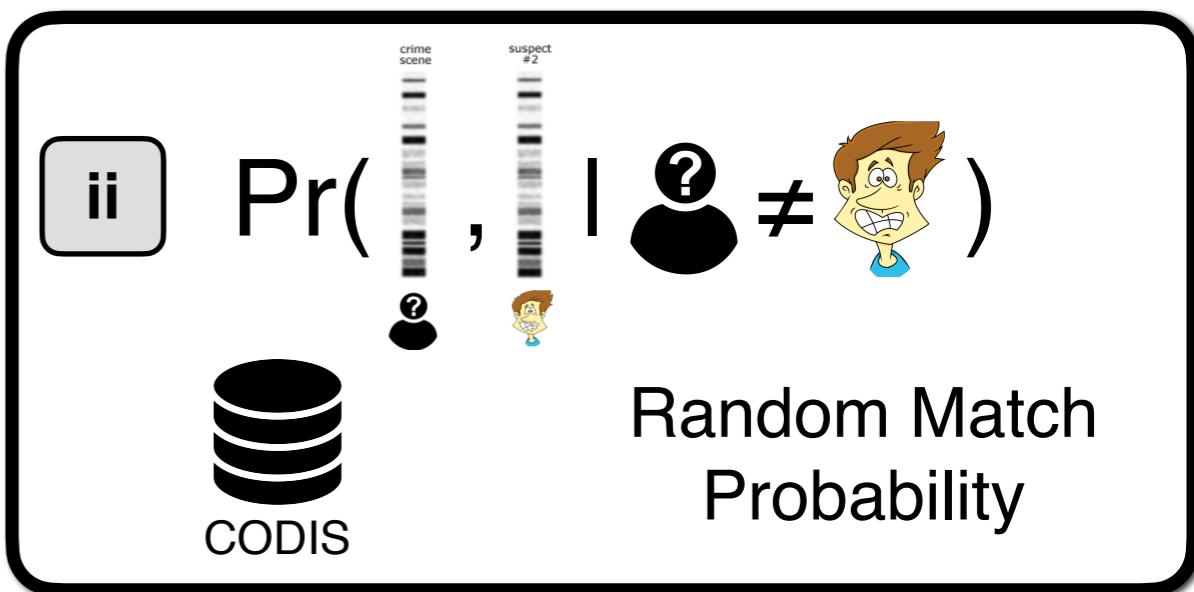
DNA Samples



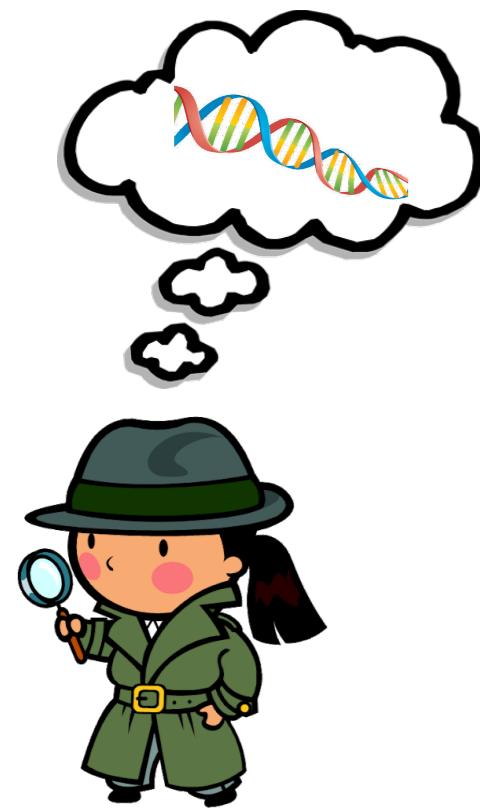
DNA Samples



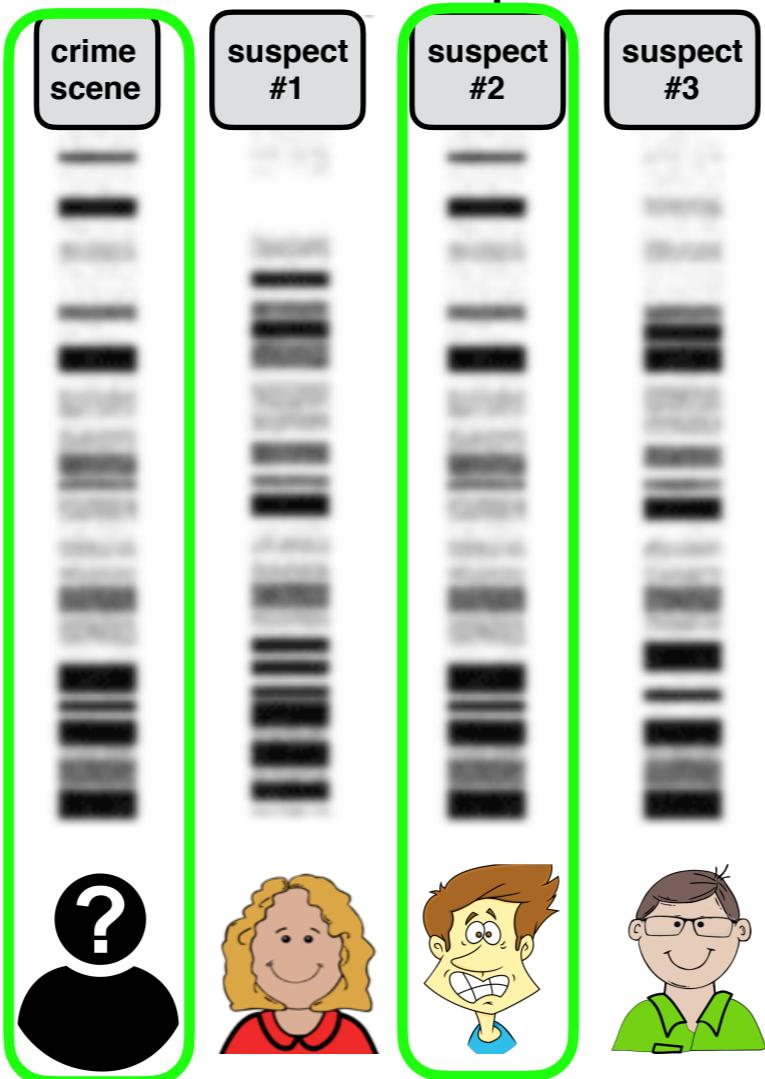
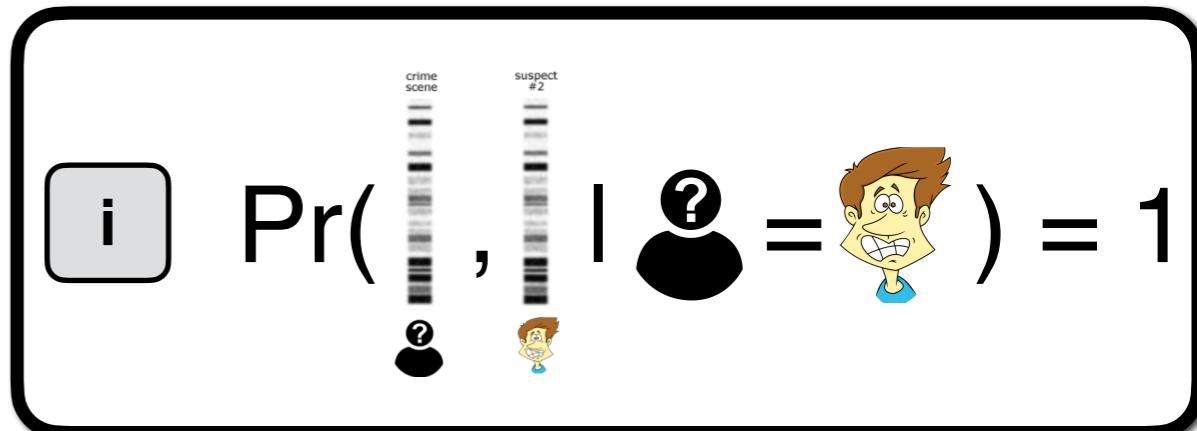
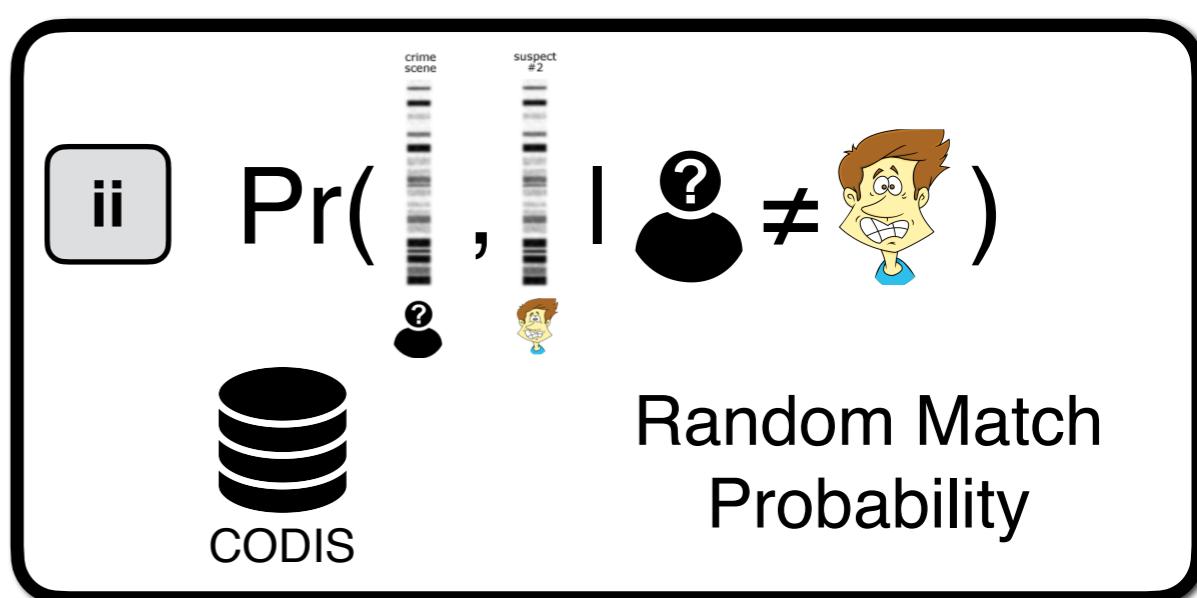
DNA Samples



Random Match Probability



DNA Samples



Likelihood Ratio

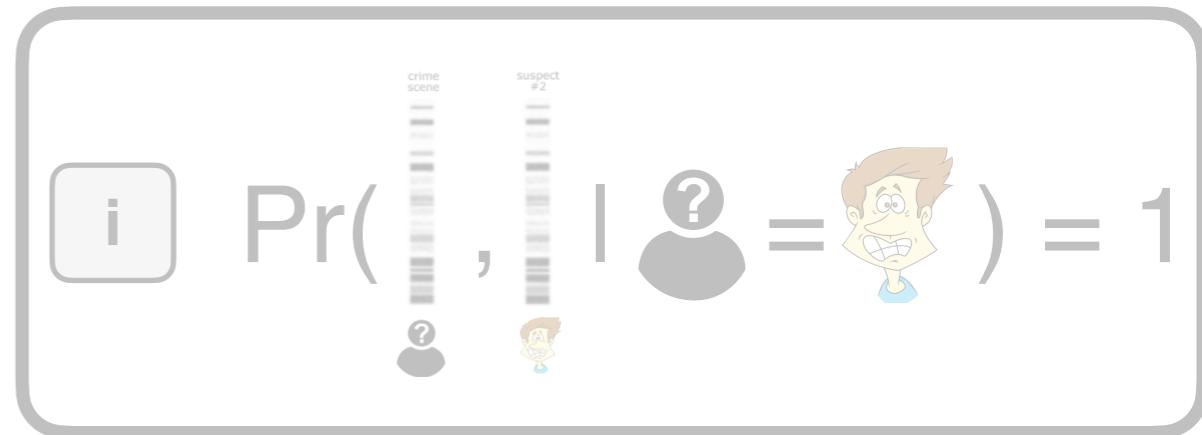
$$\frac{i}{ii}$$

< 1 Samples from different sources

$= 1$ Inconclusive

> 1 Samples from same source

DNA Samples



ch

sources

source

Extraction

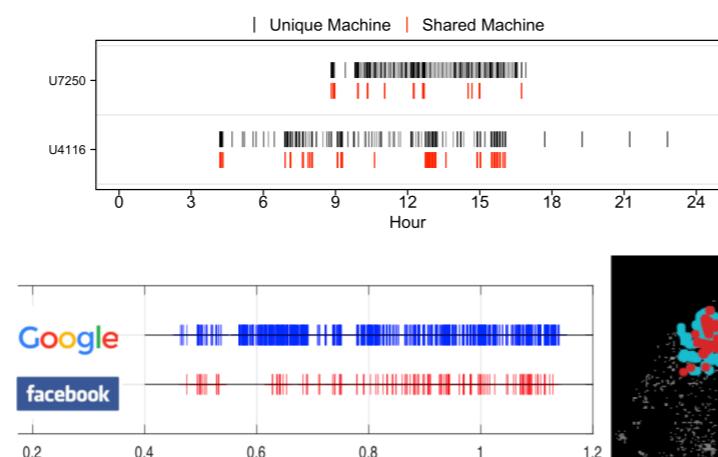
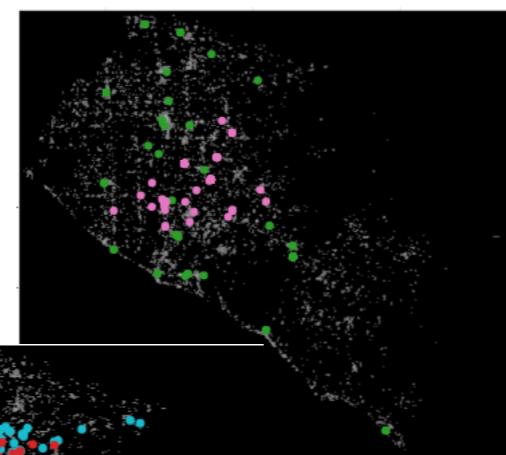
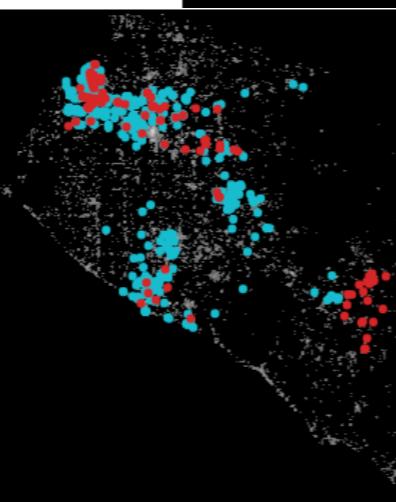
[SWDGE, 2019;
Roussev, 2016;
Casey, 2011]

Browser requests
Web searches
Email activity
Phone/SMS
Social media activity
GPS locations
File access
Network activity
Exercise/movement
...

Extraction

[SWDGE, 2019;
Roussev, 2016;
Casey, 2011]

Browser requests
Web searches
Email activity
Phone/SMS
Social media activity
GPS locations
File access
Network activity
Exercise/movement
...



Analysis & Visualization

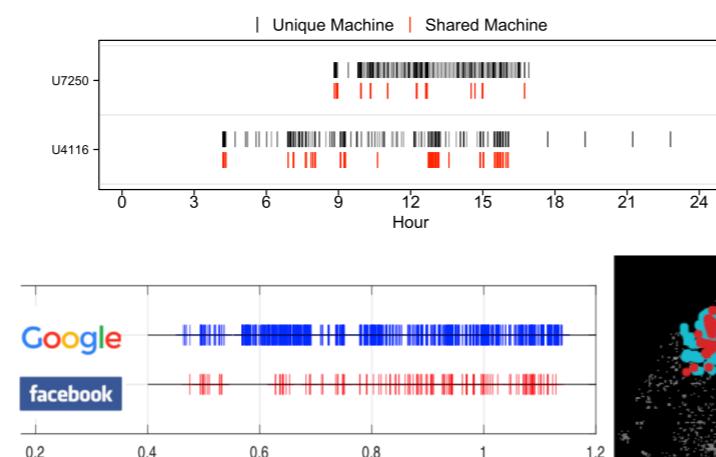
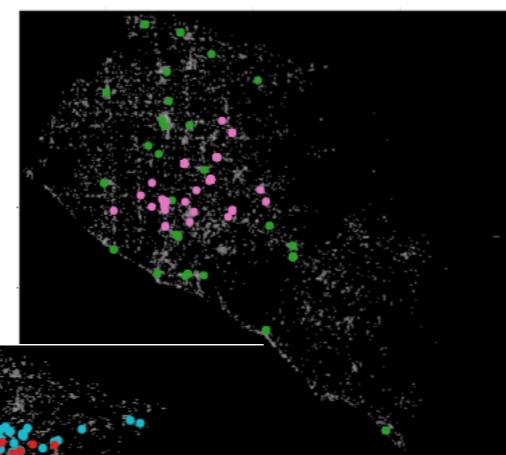
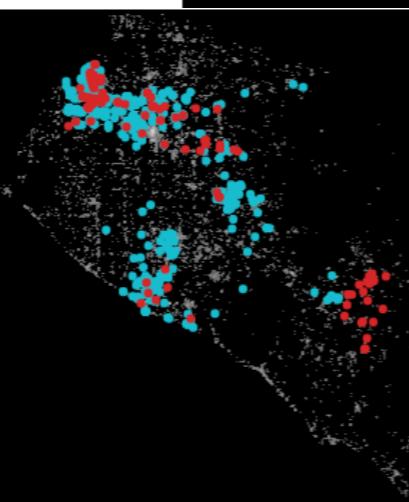
[Buchholz and Falk, 2005;
Grier, 2011;
Koven et al., 2016;
Gresty et al., 2016;
Kirchler et al., 2016]

Extraction

[SWDGE, 2019;
Roussev, 2016;
Casey, 2011]

Browser requests
Web searches
Email activity
Phone/SMS
Social media activity
GPS locations
File access
Network activity
Exercise/movement
...

Probabilistic conclusions regarding source, e.g., Likelihood Ratio



Analysis & Visualization

[Buchholz and Falk, 2005;
Grier, 2011;
Koven et al., 2016;
Gresty et al., 2016;
Kirchler et al., 2016]

Extraction

[SWDGE, 2019;
Roussev, 2016;
Casey, 2011]

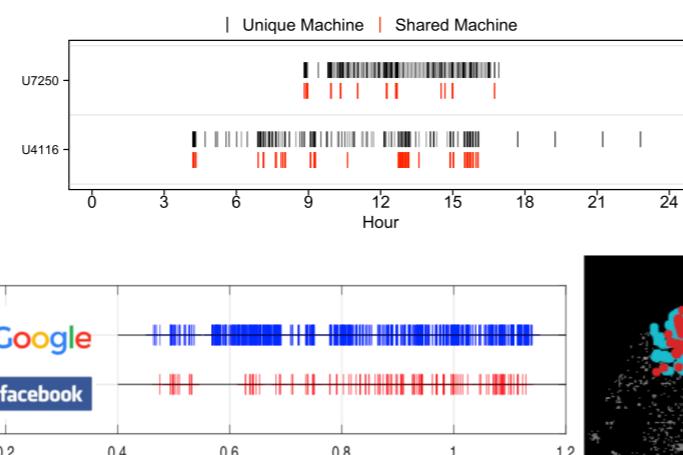
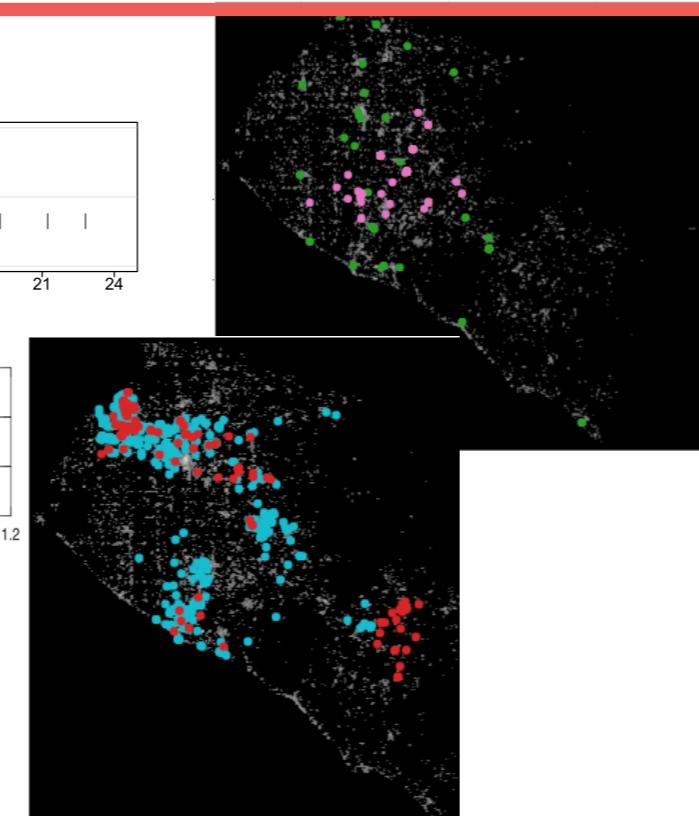
Browser requests
Web searches
Email activity
Phone/SMS
Social media activity
GPS locations
File access
Network activity
Exercise/movement
...

Analysis & Visualization

[Buchholz and Falk, 2005;
Grier, 2011;
Koven et al., 2016;
Gresty et al., 2016;
Kirchler et al., 2016]

Probabilistic conclusions regarding source, e.g., Likelihood Ratio

TOPIC OF DISSERTATION



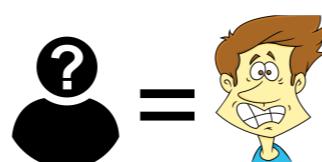
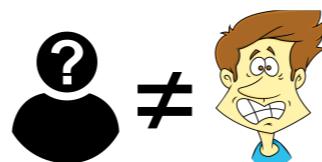
BACKGROUND

Statistical Approaches for Evaluating Forensic Evidence

Goal

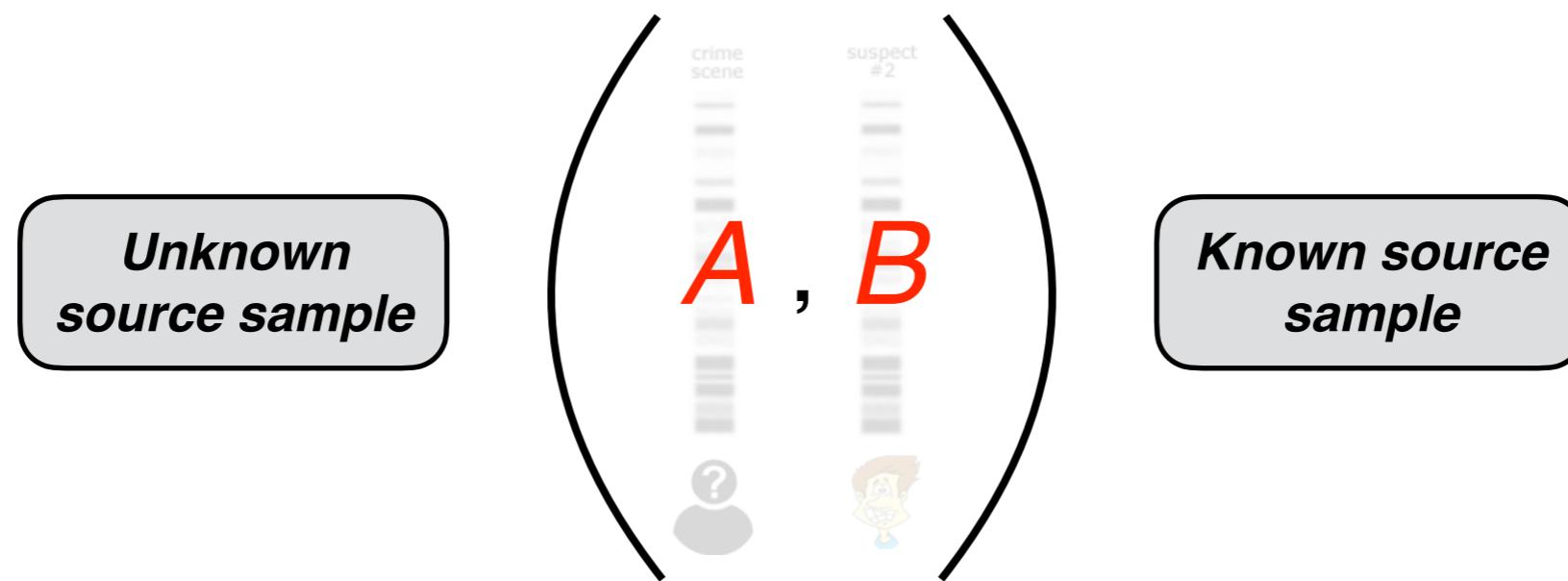
Assess the likelihood of observing

Under two competing hypotheses



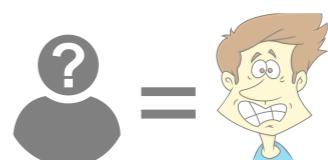
Goal

Assess the likelihood of observing



Under two competing hypotheses

H_s : (A, B) came from the same source



H_d : (A, B) came from the different sources

**Wait...why aren't we interested in the probability
of the source hypothesis *given the evidence*?**

Wait...why aren't we interested in the probability of the source hypothesis given the evidence?

$$\underbrace{\frac{Pr(H_s | A, B, I)}{Pr(H_d | A, B, I)}}_{\text{posterior odds}}$$

Wait...why aren't we interested in the probability of the source hypothesis given the evidence?

$$\frac{\Pr(H_s | A, B, I)}{\Pr(H_d | A, B, I)} = \underbrace{\frac{\Pr(A, B | H_s, I)}{\Pr(A, B | H_d, I)}}_{\text{posterior odds}} \cdot \underbrace{\frac{\Pr(H_s | I)}{\Pr(H_d | I)}}_{\text{prior odds}}$$

likelihood ratio

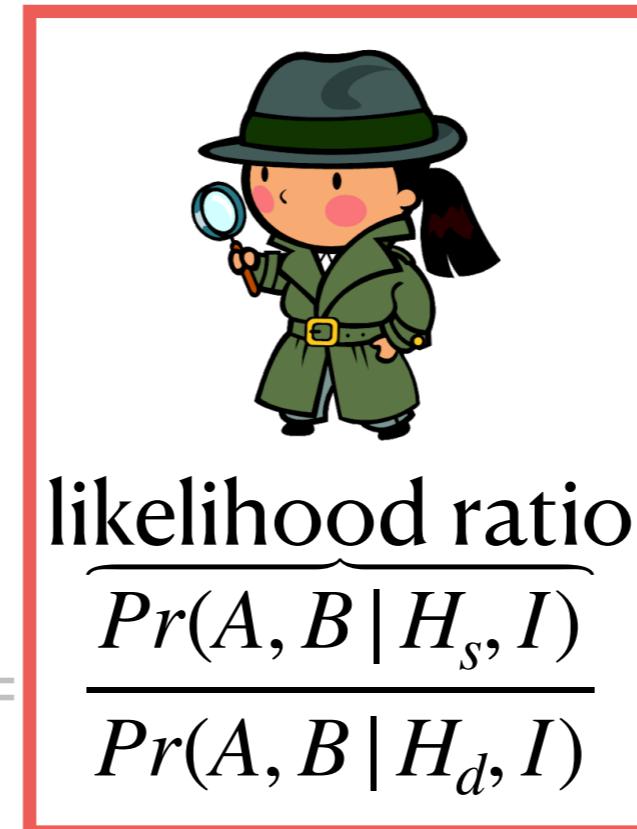
$$\underbrace{\frac{Pr(H_s | A, B, I)}{Pr(H_d | A, B, I)}}_{\text{posterior odds}} = \underbrace{\frac{Pr(A, B | H_s, I)}{Pr(A, B | H_d, I)}}_{\text{likelihood ratio}} \cdot \underbrace{\frac{Pr(H_s | I)}{Pr(H_d | I)}}_{\text{prior odds}}$$

$$\underbrace{\frac{Pr(H_s | A, B, I)}{Pr(H_d | A, B, I)}}_{\text{posterior odds}} = \underbrace{\frac{Pr(A, B | H_s, I)}{Pr(A, B | H_d, I)}}_{\text{likelihood ratio}} \cdot \underbrace{\frac{Pr(H_s | I)}{Pr(H_d | I)}}_{\text{prior odds}}$$

“Strength of Evidence”

$$\frac{\Pr(H_s | A, B, I)}{\Pr(H_d | A, B, I)} =$$

posterior odds



“Weight of Evidence”

[Pierce, 1878]

$$\frac{\Pr(H_s | I)}{\Pr(H_d | I)} =$$

prior odds

The Likelihood Ratio

- Widely accepted as a “logically defensible way” to assess the strength of evidence [Willis et al., 2016]

The Likelihood Ratio

- Widely accepted as a “logically defensible way” to assess the strength of evidence [Willis et al., 2016]
- Has been applied in a variety of forensic disciplines

The Likelihood Ratio

- Widely accepted as a “logically defensible way” to assess the strength of evidence [Willis et al., 2016]
- Has been applied in a variety of forensic disciplines
 - DNA [Aitken & Stoney, 1991; Evett & Weir, 1998; Steele & Balding, 2014]
 - Fingerprints [Champod & Evett, 2001]
 - Handwriting [Bozza et al., 2008]
 - Speaker Recognition [Champod & Meuwly, 2000]

The Likelihood Ratio

- Widely accepted as a “logically defensible way” to assess the strength of evidence [Willis et al., 2016]
- Has been applied in a variety of forensic disciplines
 - DNA [Aitken & Stoney, 1991; Evett & Weir, 1998; Steele & Balding, 2014]
 - Fingerprints [Champod & Evett, 2001]
 - Handwriting [Bozza et al., 2008]
 - Speaker Recognition [Champod & Meuwly, 2000]
- Studies demonstrating its understanding

The Likelihood Ratio

- Widely accepted as a “logically defensible way” to assess the strength of evidence [Willis et al., 2016]
- Has been applied in a variety of forensic disciplines
 - DNA [Aitken & Stoney, 1991; Evett & Weir, 1998; Steele & Balding, 2014]
 - Fingerprints [Champod & Evett, 2001]
 - Handwriting [Bozza et al., 2008]
 - Speaker Recognition [Champod & Meuwly, 2000]
- Studies demonstrating its understanding
 - Misconceptions [Martire et al., 2013, Thompson and Newman, 2015, Thompson et al., 2018]

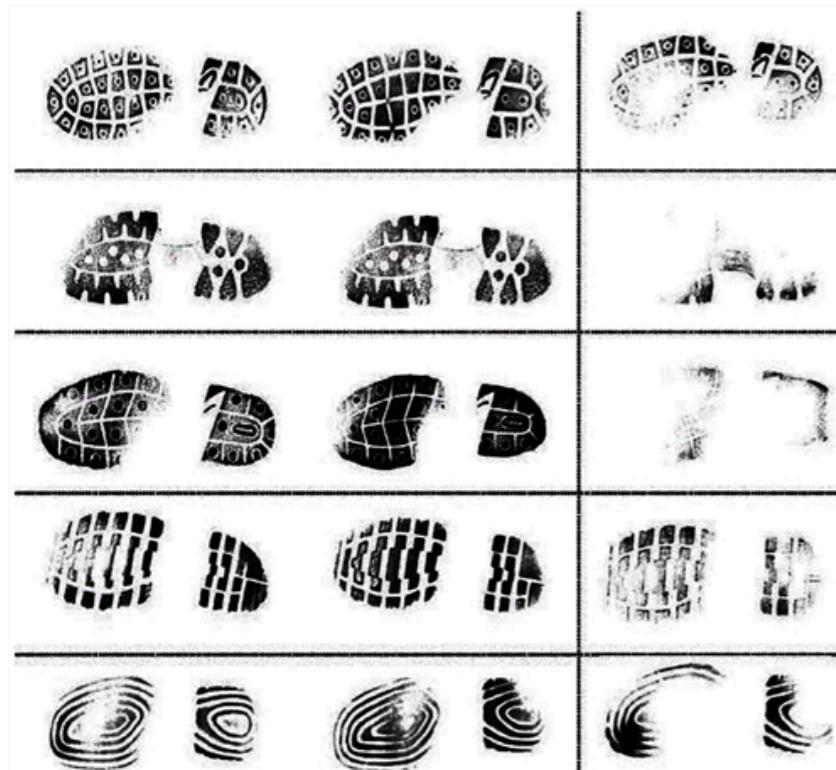
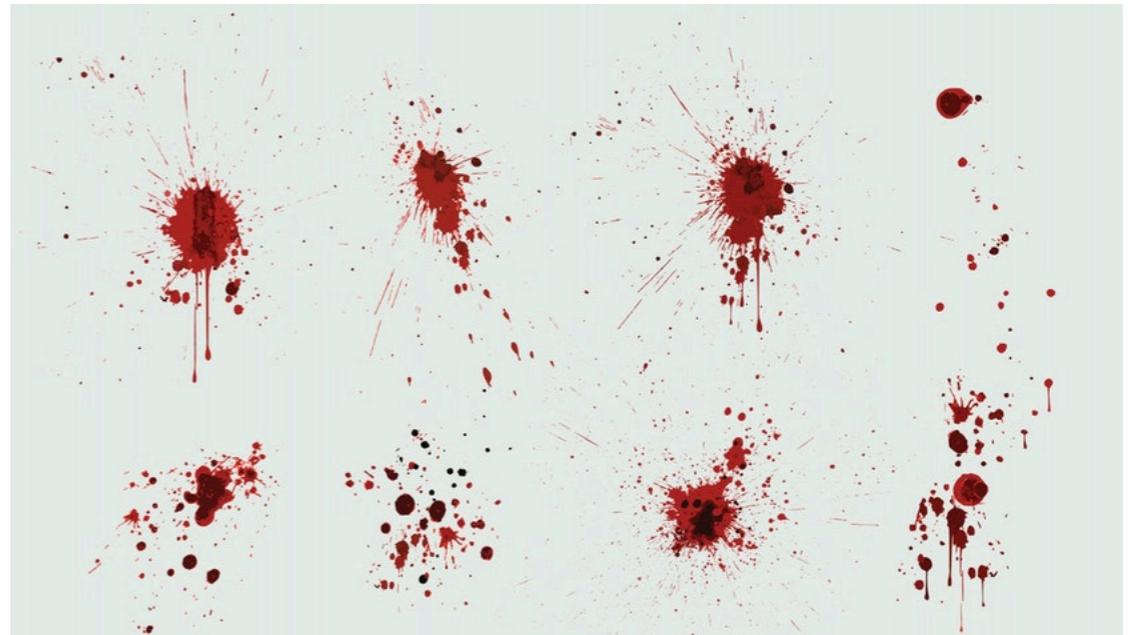
The Likelihood Ratio

- Widely accepted as a “logically defensible way” to assess the strength of evidence [Willis et al., 2016]
- Has been applied in a variety of forensic disciplines
 - DNA [Aitken & Stoney, 1991; Evett & Weir, 1998; Steele & Balding, 2014]
 - Fingerprints [Champod & Evett, 2001]
 - Handwriting [Bozza et al., 2008]
 - Speaker Recognition [Champod & Meuwly, 2000]
- Studies demonstrating its understanding
 - Misconceptions [Martire et al., 2013, Thompson and Newman, 2015, Thompson et al., 2018]
 - Verbal Equivalents [e.g., AFSP, 2009]

Why not always use the LR?

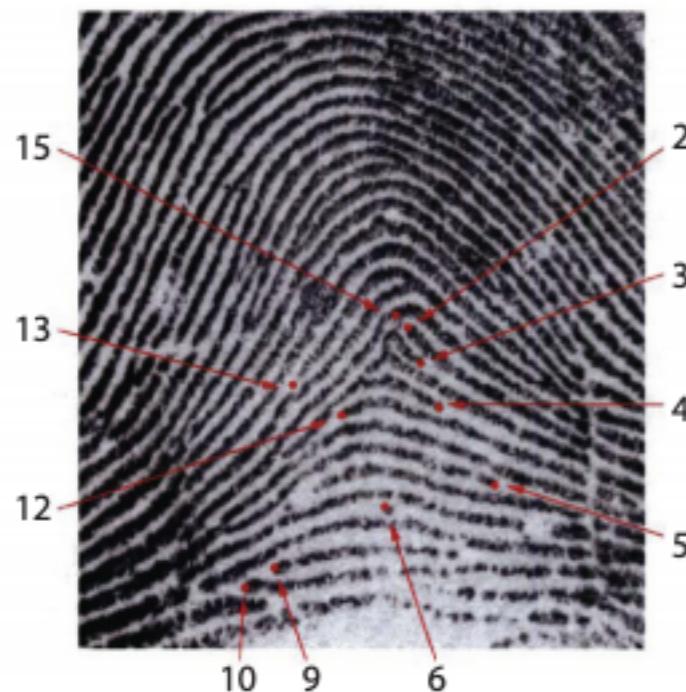
Why not always use the LR?

Complexity: Evidence can be high-dimensional



Why not always use the LR?

- **Complexity:** Evidence can be high-dimensional
- **Feature Selection:** Wide variety of features to consider



[Fine, 2016]

Why not always use the LR?

- **Complexity:** Evidence can be high-dimensional
- **Feature Selection:** Wide variety of features to consider
- **Appropriate Probability Models:** Must describe variation within a given source and between different sources

$$H_s: \text{?} = \text{!}$$
$$H_d: \text{?} \neq \text{!}$$

Why not always use the LR?

- **Complexity:** Evidence can be high-dimensional
- **Feature Selection:** Wide variety of features to consider
- **Appropriate Probability Models:** Must describe variation within a given source and between different sources
- **Reference Population:** Difficult to identify a *relevant* reference population to estimate model parameters & perform validation studies

Score-based Approaches

- Measure similarity between A and B via a *score function*

$$\Delta(A, B)$$

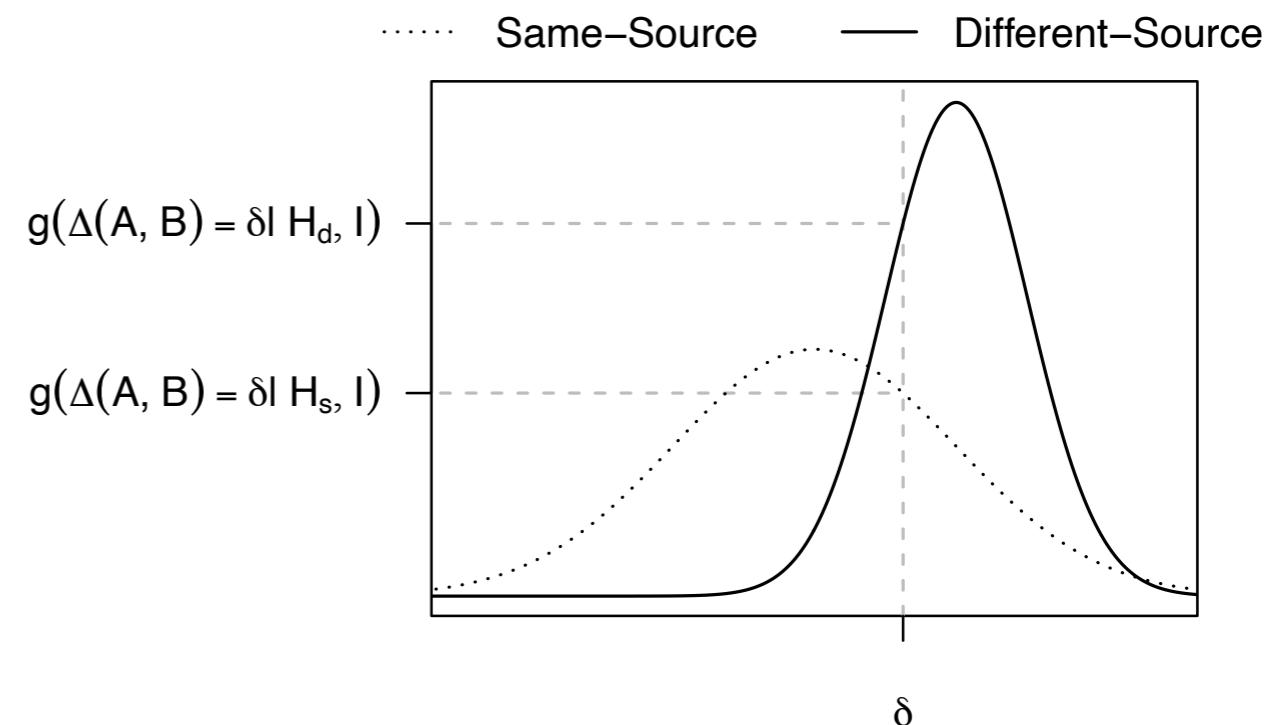
Score-based Approaches

- Measure similarity between A and B via a *score function*

$$\Delta(A, B)$$

- **Score-based Likelihood Ratio:** Compute a LR for the observed score

$$SLR_{\Delta} = \frac{g(\Delta(A, B) = \delta | H_s, I)}{g(\Delta(A, B) = \delta | H_d, I)}$$



Score-based Approaches

- Measure similarity between A and B via a *score function*

$$\Delta(A, B)$$

- **Score-based Likelihood Ratio:** Compute a LR for the observed score

$$SLR_{\Delta} = \frac{g(\Delta(A, B) = \delta | H_s, I)}{g(\Delta(A, B) = \delta | H_d, I)}$$

Gaining popularity in a variety of forensic disciplines

- Chemical Concentrations [Bolck et al., 2015]
- Speaker Recognition [Gonzalez-Rodriguez et al., 2007]
- Fingerprints [Alberink et al., 2013; Neumann et al., 2015]
- Handwriting [Hepler et al., 2012]

Score-based Approaches

- Measure similarity between A and B via a *score function*

$$\Delta(A, B)$$

- **Score-based Likelihood Ratio:** Compute a LR for the observed score

$$SLR_{\Delta} = \frac{g(\Delta(A, B) = \delta | H_s, I)}{g(\Delta(A, B) = \delta | H_d, I)}$$

CONTRIBUTION CHAPTER #3 [Galbraith, Smyth & Stern, JRSSA 2020]

- **Coincidental Match Probability:**

Score-based Approaches

- Measure similarity between A and B via a *score function*

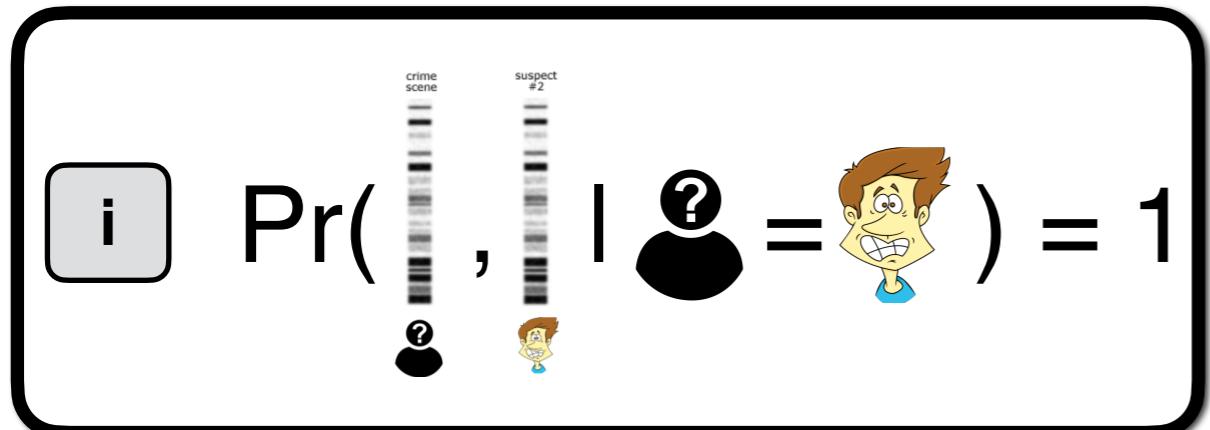
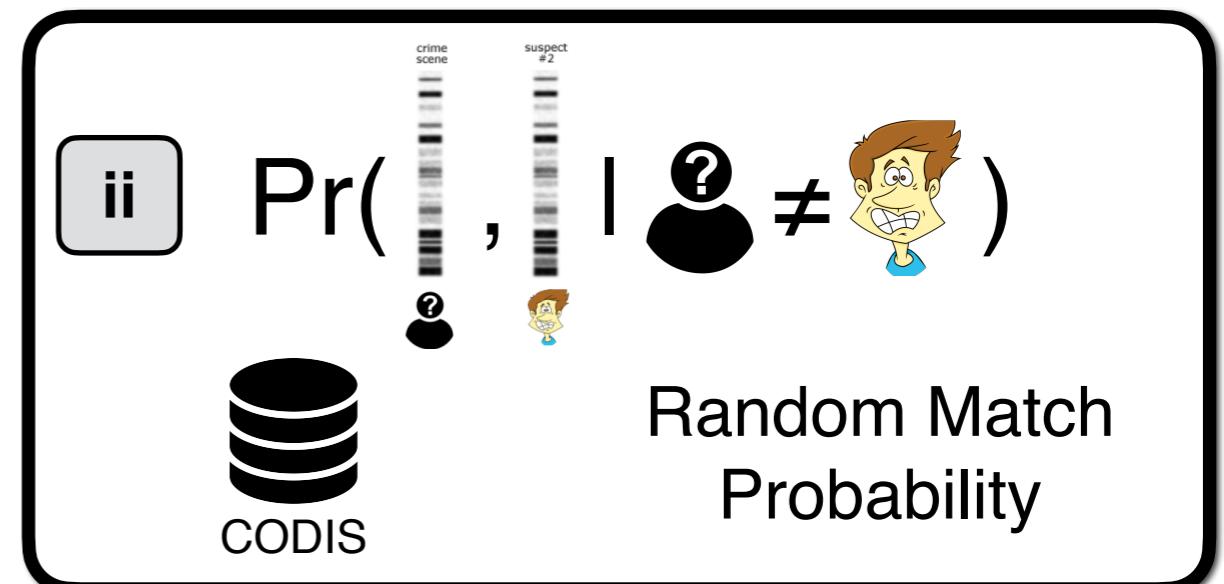
$$\Delta(A, B)$$

- **Score-based Likelihood Ratio:** Compute a LR for the observed score

$$SLR_{\Delta} = \frac{g(\Delta(A, B) = \delta | H_s, I)}{g(\Delta(A, B) = \delta | H_d, I)}$$

CONTRIBUTION CHAPTER #3 [Galbraith, Smyth & Stern, JRSSA 2020]

- **Coincidental Match Probability:**



Score-based Approaches

- Measure similarity between A and B via a *score function*

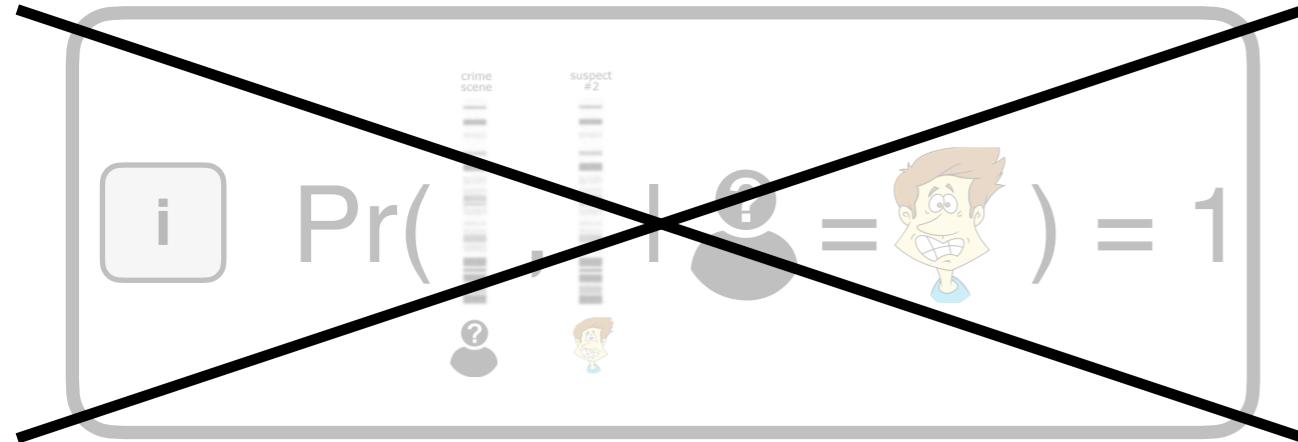
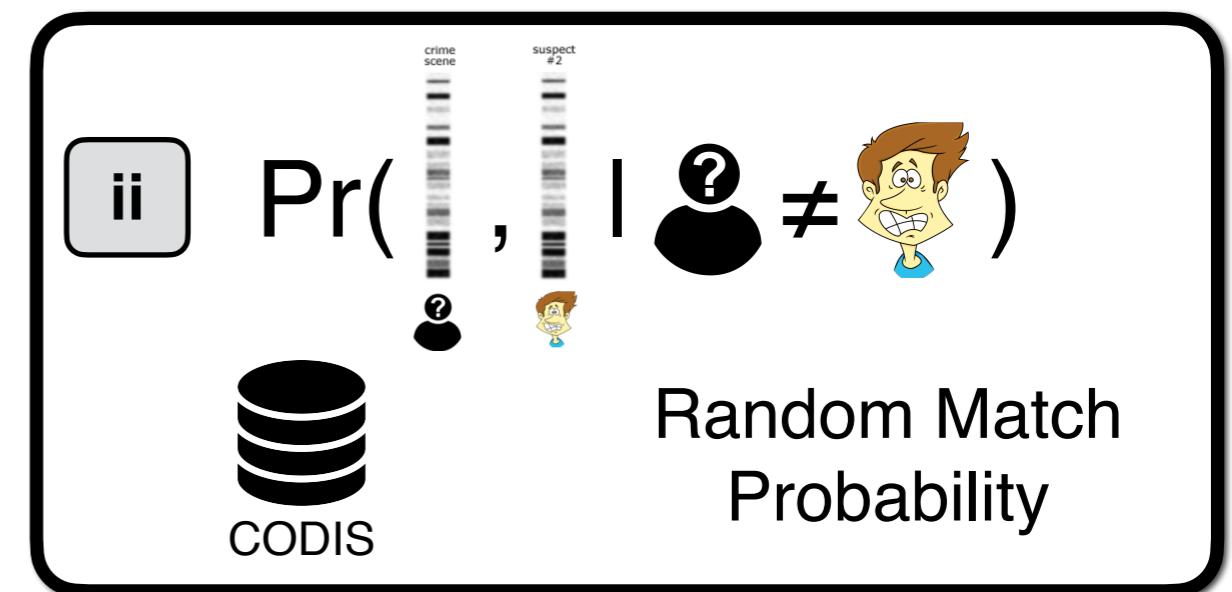
$$\Delta(A, B)$$

- **Score-based Likelihood Ratio:** Compute a LR for the observed score

$$SLR_{\Delta} = \frac{g(\Delta(A, B) = \delta | H_s, I)}{g(\Delta(A, B) = \delta | H_d, I)}$$

CONTRIBUTION CHAPTER #3 [Galbraith, Smyth & Stern, JRSSA 2020]

- **Coincidental Match Probability:**



Score-based Approaches

- Measure similarity between A and B via a *score function*

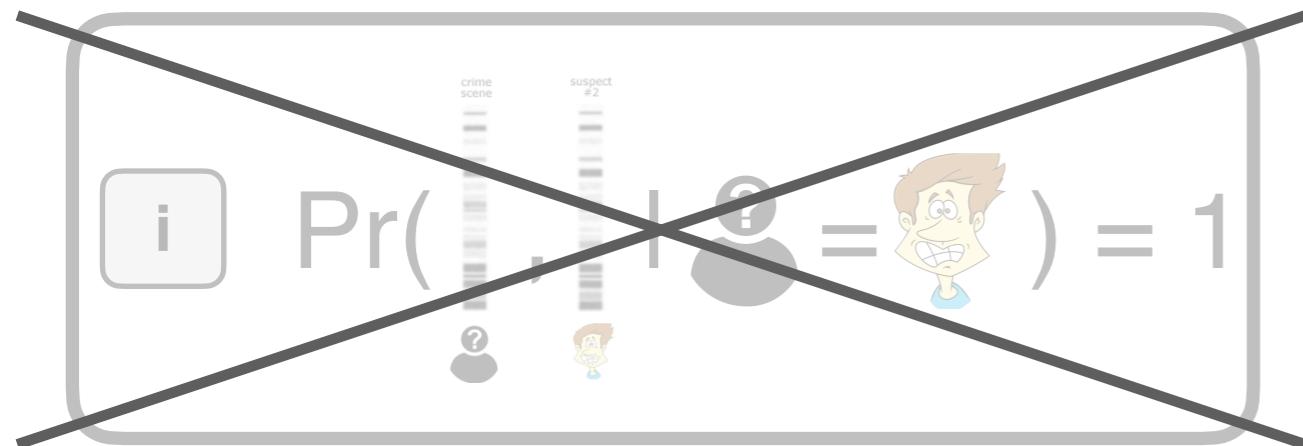
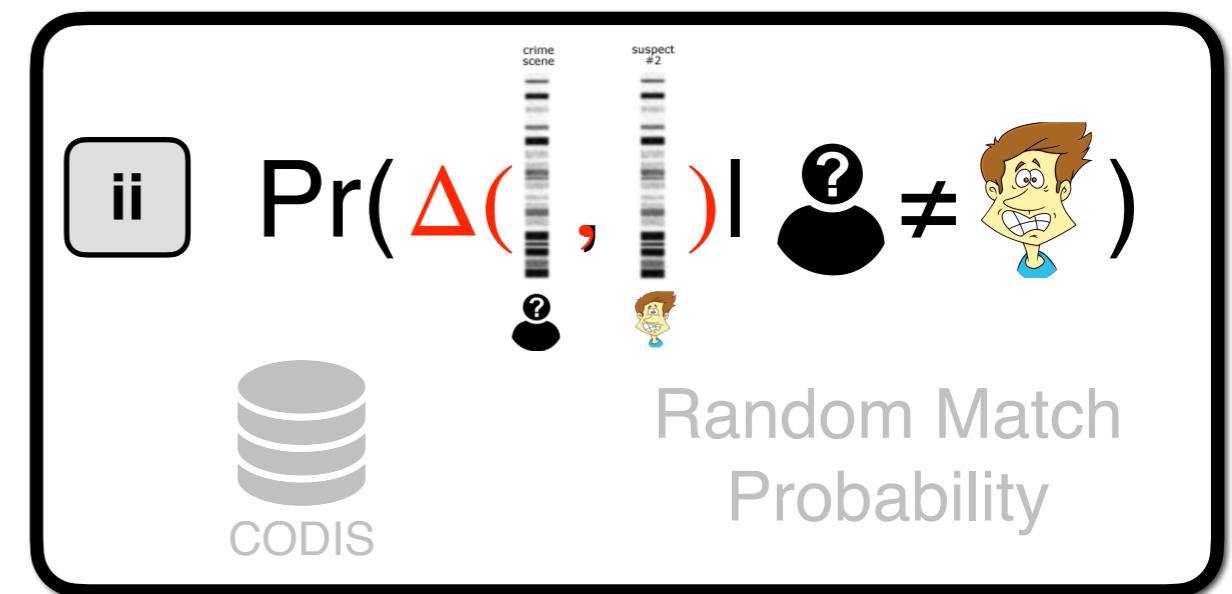
$$\Delta(A, B)$$

- **Score-based Likelihood Ratio:** Compute a LR for the observed score

$$SLR_{\Delta} = \frac{g(\Delta(A, B) = \delta | H_s, I)}{g(\Delta(A, B) = \delta | H_d, I)}$$

CONTRIBUTION CHAPTER #3 [Galbraith, Smyth & Stern, JRSSA 2020]

- **Coincidental Match Probability:**



Score-based Approaches

- Measure similarity between A and B via a *score function*

$$\Delta(A, B)$$

- **Score-based Likelihood Ratio:** Compute a LR for the observed score

$$SLR_{\Delta} = \frac{g(\Delta(A, B) = \delta | H_s, I)}{g(\Delta(A, B) = \delta | H_d, I)}$$

CONTRIBUTION CHAPTER #3 [Galbraith, Smyth & Stern, JRSSA 2020]

- **Coincidental Match Probability:** Probability that different-source evidence has a more extreme score than the observed score

Score-based Approaches

- Measure similarity between A and B via a *score function*

$$\Delta(A, B)$$

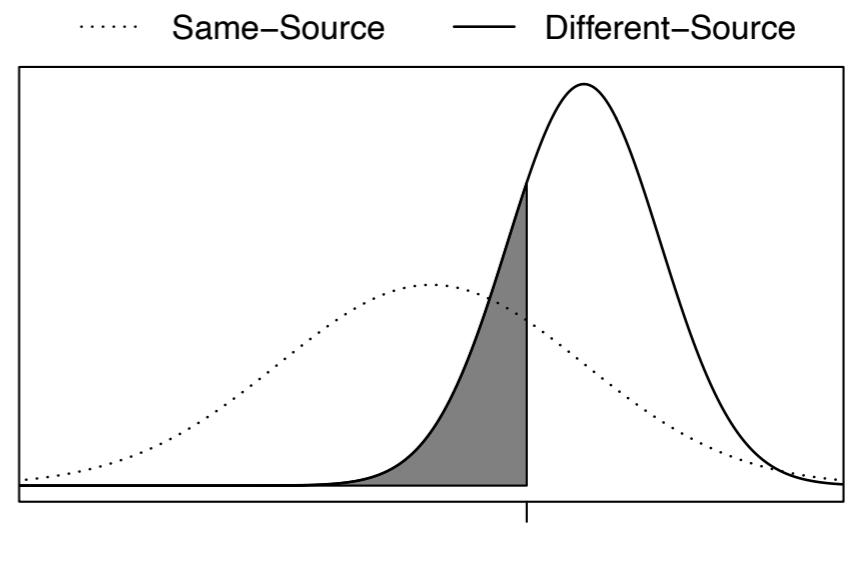
- **Score-based Likelihood Ratio:** Compute a LR for the observed score

$$SLR_{\Delta} = \frac{g(\Delta(A, B) = \delta | H_s, I)}{g(\Delta(A, B) = \delta | H_d, I)}$$

CONTRIBUTION CHAPTER #3 [Galbraith, Smyth & Stern, JRSSA 2020]

- **Coincidental Match Probability:** Probability that different-source evidence has a more extreme score than the observed score

$$CMP_{\Delta} = Pr(\Delta(A, B) < \delta | H_d, I)$$



Evidence Evaluation Approaches

- **Likelihood Ratio:** Models evidence directly

$$LR = \frac{Pr(A, B | H_s, I)}{Pr(A, B | H_d, I)}$$

- **Score-based Likelihood Ratio:** Models low-dimensional summary of the evidence, $\Delta(A, B)$

$$SLR_{\Delta} = \frac{g(\Delta(A, B) = \delta | H_s, I)}{g(\Delta(A, B) = \delta | H_d, I)}$$

- **CONTRIBUTION** CHAPTER #3 [Galbraith, Smyth & Stern, JRSSA 2020]
- **Coincidental Match Probability:** Focus on different-source score distribution; similar to RMP, but we don't determine a “match” first

$$CMP_{\Delta} = Pr(\Delta(A, B) < \delta | H_d, I)$$

BACKGROUND

Empirical Evaluation Techniques

Empirical Evaluation Techniques

- **Validation Data:** Sample from relevant reference population

- \mathcal{D}_s^* known same-source evidence
 - \mathcal{D}_d^* known different-source evidence

Empirical Evaluation Techniques

- **Validation Data:** Sample from relevant reference population
 - \mathcal{D}_s^* known same-source evidence
 - \mathcal{D}_d^* known different-source evidence

- **Classification Performance:** TP/FP rates, AUC

Empirical Evaluation Techniques

- **Validation Data:** Sample from relevant reference population

- \mathcal{D}_s^* known same-source evidence
 - \mathcal{D}_d^* known different-source evidence

- **Classification Performance:** TP/FP rates, AUC

- **Calibration:** Same-source evidence should have larger LR/SLR (or smaller CMP) values than different-source evidence, e.g.,

- $LR_s \in \mathcal{D}_s^*, LR_d \in \mathcal{D}_d^* \Rightarrow LR_d < LR_s$

Empirical Evaluation Techniques

- **Validation Data:** Sample from relevant reference population
 - \mathcal{D}_s^* known same-source evidence
 - \mathcal{D}_d^* known different-source evidence
- **Classification Performance:** TP/FP rates, AUC
- **Calibration:** Same-source evidence should have larger LR/SLR (or smaller CMP) values than different-source evidence
- **Information-theoretic Evaluation:** How much does the LR/SLR value reduce the uncertainty regarding the source hypotheses?
 - Empirical cross-entropy [Brümmer & du Preez, 2006; Ramos, 2007]

Empirical Cross-Entropy

- **Cross-entropy:** $\mathcal{U}_{Q||P}(H_s | E) = - \mathbb{E}_{Q(E, H_s)} \log P(H_s | E)$

Empirical Cross-Entropy

- **Cross-entropy:** $\mathcal{U}_{Q||P}(H_s | E) = - \mathbb{E}_{Q(E, H_s)} \log P(H_s | E)$

$$Q(H_s | E) = \begin{cases} 1, & H_s \text{ true} \\ 0, & H_d \text{ true} \end{cases}$$

Target Posterior

Empirical Cross-Entropy

- **Cross-entropy:** $\mathcal{U}_{Q||P}(H_s | E) = - \mathbb{E}_{Q(E, H_s)} \log P(H_s | E)$

$$Q(H_s | E) = \begin{cases} 1, & H_s \text{ true} \\ 0, & H_d \text{ true} \end{cases}$$

Target Posterior

$$P(H_s | E) = \frac{LR \times \frac{P(H_s)}{P(H_d)}}{1 + LR \times \frac{P(H_s)}{P(H_d)}}$$

Posterior (from evidence evaluation)

Empirical Cross-Entropy

- **Cross-entropy:** $\mathcal{U}_{Q||P}(H_s | E) = - \mathbb{E}_{Q(E, H_s)} \log P(H_s | E)$

$$Q(H_s | E) = \begin{cases} 1, & H_s \text{ true} \\ 0, & H_d \text{ true} \end{cases}$$

Target Posterior

$$P(H_s | E) = \frac{LR \times \frac{P(H_s)}{P(H_d)}}{1 + LR \times \frac{P(H_s)}{P(H_d)}}$$

Posterior (from evidence evaluation)

→ Using above target posterior, $\mathcal{U}_{Q||P}(H_s | E) = D_{Q||P}(H_s | E)$

Empirical Cross-Entropy

- **Cross-entropy:** $\mathcal{U}_{Q||P}(H_s | E) = - \mathbb{E}_{Q(E, H_s)} \log P(H_s | E)$

$$Q(H_s | E) = \begin{cases} 1, & H_s \text{ true} \\ 0, & H_d \text{ true} \end{cases}$$

Target Posterior

$$P(H_s | E) = \frac{LR \times \frac{P(H_s)}{P(H_d)}}{1 + LR \times \frac{P(H_s)}{P(H_d)}}$$

Posterior (from evidence evaluation)

- Using above target posterior, $\mathcal{U}_{Q||P}(H_s | E) = D_{Q||P}(H_s | E)$
- Equivalent to Bayes risk for logarithmic loss [Proof in CHAPTER #2]

Empirical Cross-Entropy

- **Cross-entropy:** $\mathcal{U}_{Q||P}(H_s | E) = - \mathbb{E}_{Q(E, H_s)} \log P(H_s | E)$

$$Q(H_s | E) = \begin{cases} 1, & H_s \text{ true} \\ 0, & H_d \text{ true} \end{cases}$$

Target Posterior

$$P(H_s | E) = \frac{LR \times \frac{P(H_s)}{P(H_d)}}{1 + LR \times \frac{P(H_s)}{P(H_d)}}$$

Posterior (from evidence evaluation)

- Using above target posterior, $\mathcal{U}_{Q||P}(H_s | E) = D_{Q||P}(H_s | E)$
- Equivalent to Bayes risk for logarithmic loss [Proof in CHAPTER #2]

- **Empirical Cross-entropy:** Estimate $\mathcal{U}_{Q||P}(H_s | E)$ by averaging over validation data

Empirical Cross-Entropy

- **Cross-entropy:** $\mathcal{U}_{Q||P}(H_s | E) = - \mathbb{E}_{Q(E, H_s)} \log P(H_s | E)$

$$Q(H_s | E) = \begin{cases} 1, & H_s \text{ true} \\ 0, & H_d \text{ true} \end{cases}$$

Target Posterior

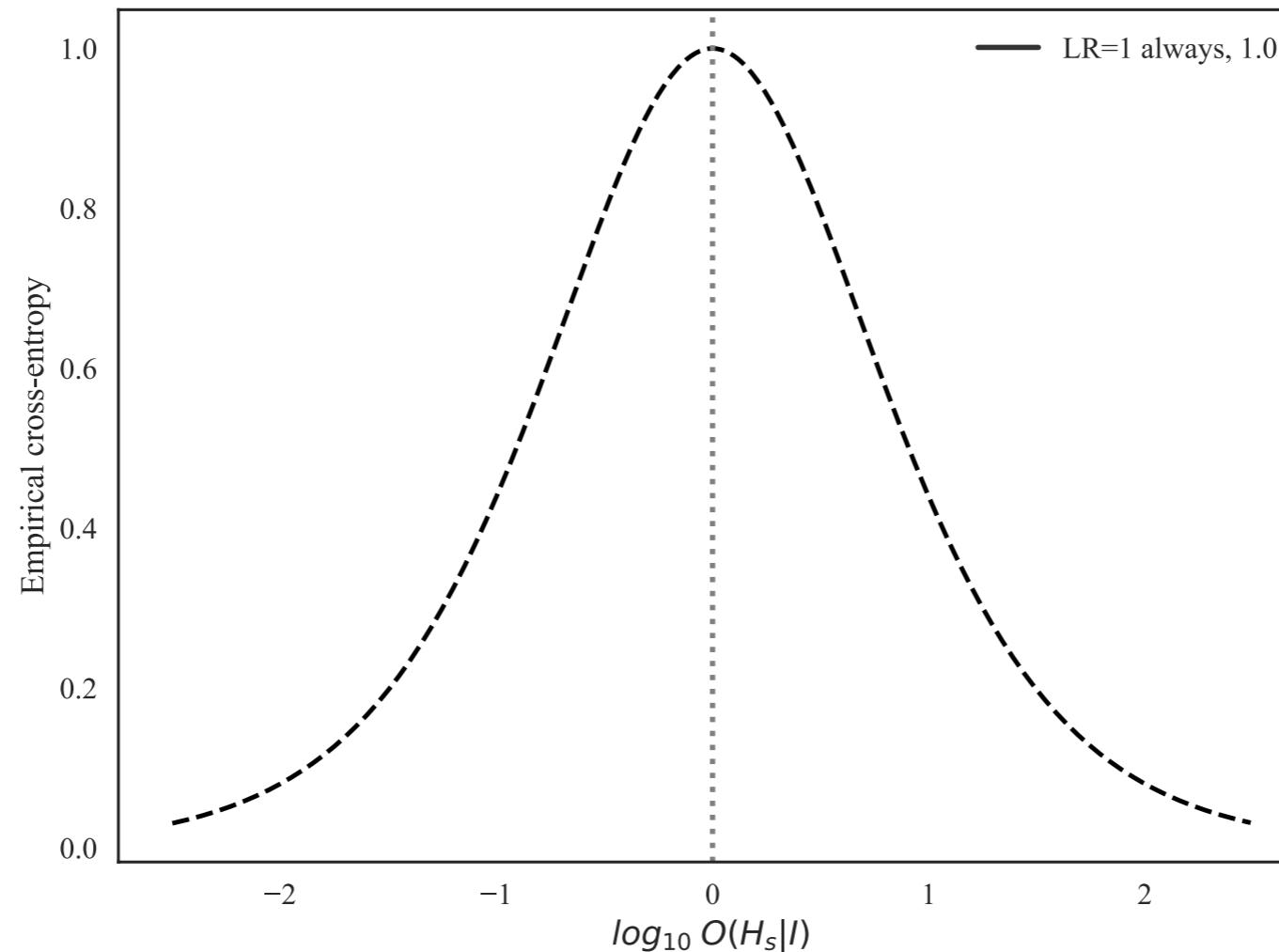
$$P(H_s | E) = \frac{LR \times \frac{P(H_s)}{P(H_d)}}{1 + LR \times \frac{P(H_s)}{P(H_d)}}$$

Posterior (from evidence evaluation)

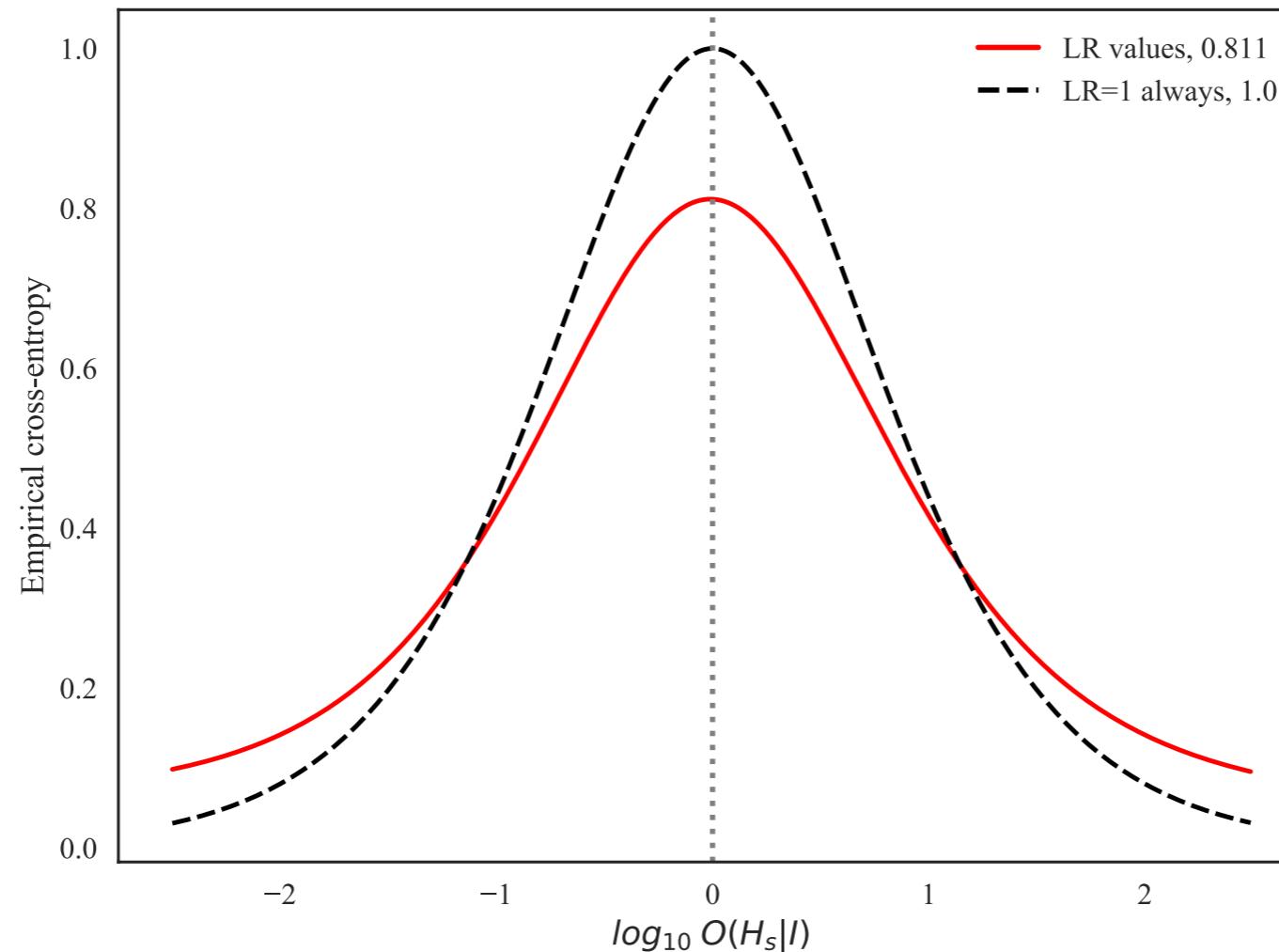
- Using above target posterior, $\mathcal{U}_{Q||P}(H_s | E) = D_{Q||P}(H_s | E)$
- Equivalent to Bayes risk for logarithmic loss [Proof in CHAPTER #2]

- **Empirical Cross-entropy:** Estimate $\mathcal{U}_{Q||P}(H_s | E)$ by averaging over validation data
 - Repeat over a range of priors $P(H_s)$

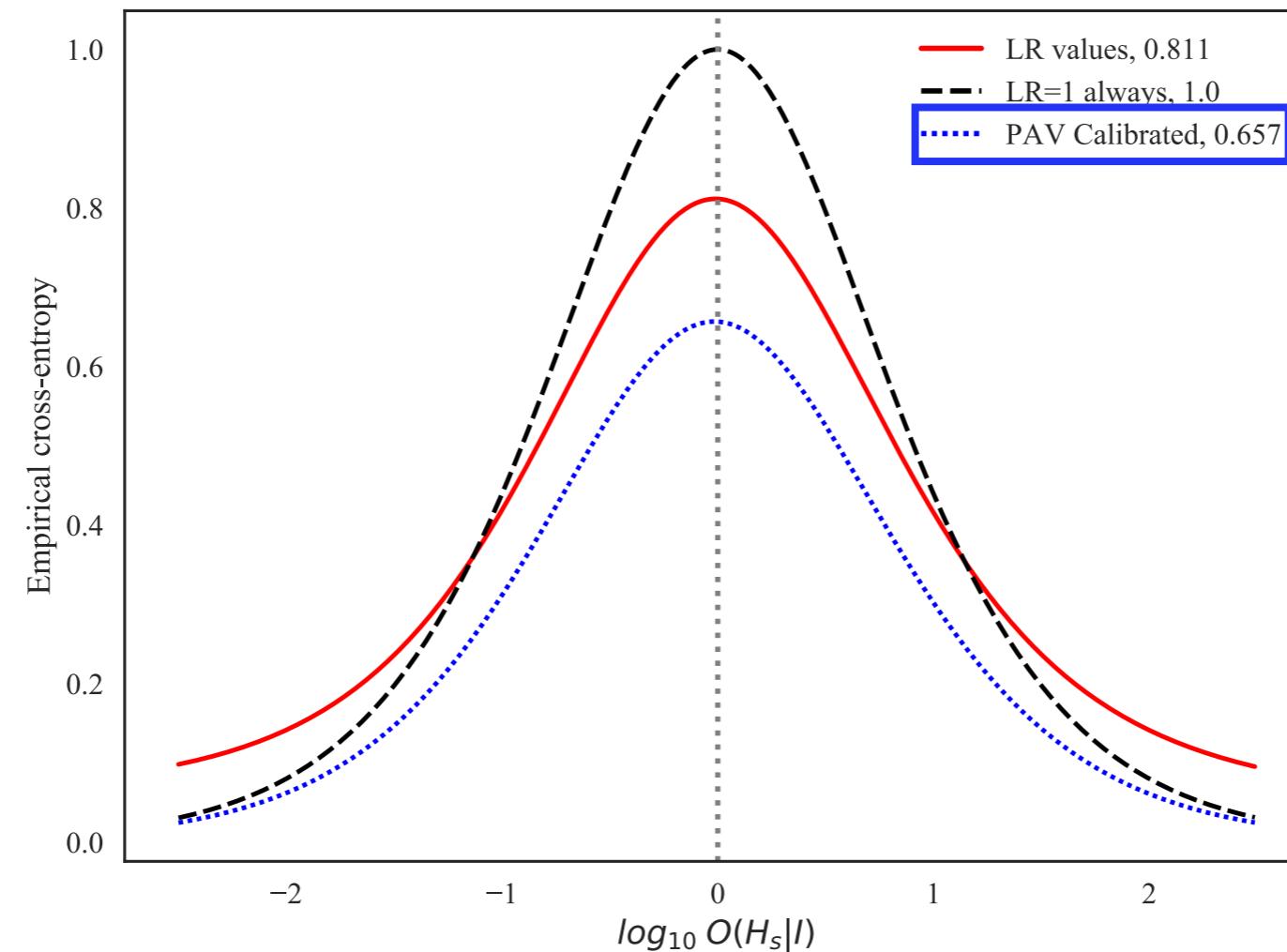
ECE Plot



ECE Plot



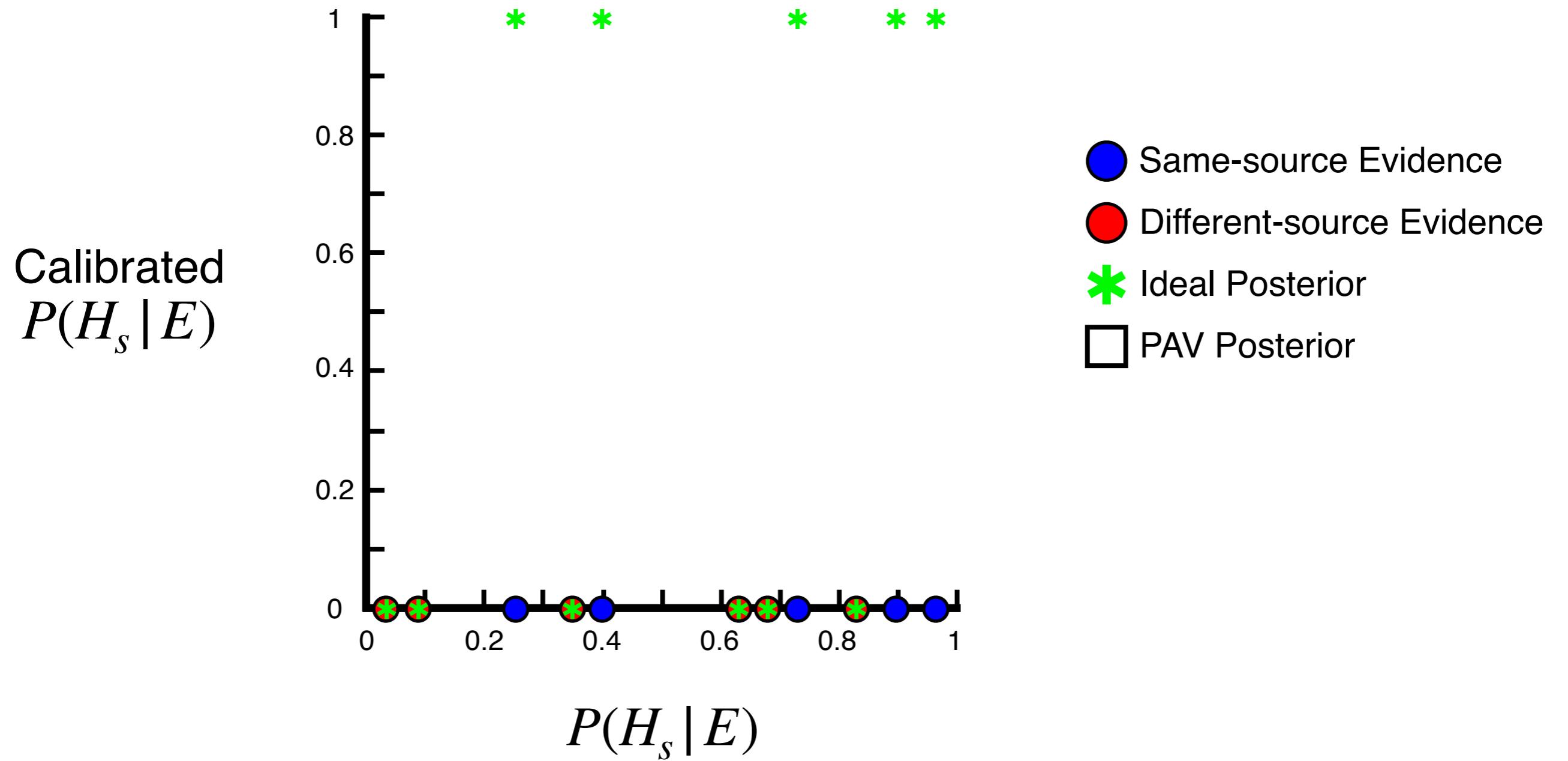
ECE Plot



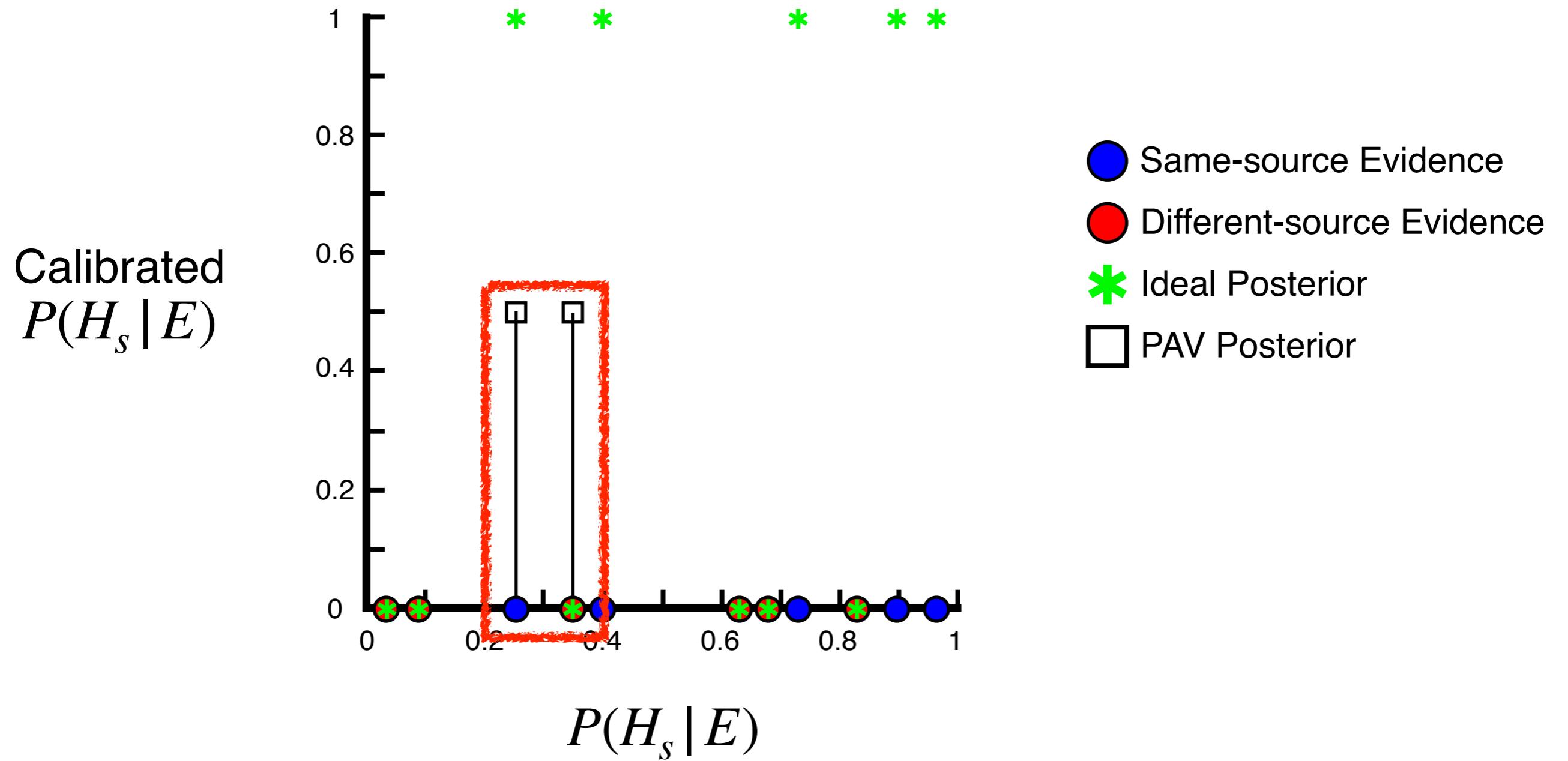
Isotonic
Regression

[Zadrozny & Elkan, 2002]

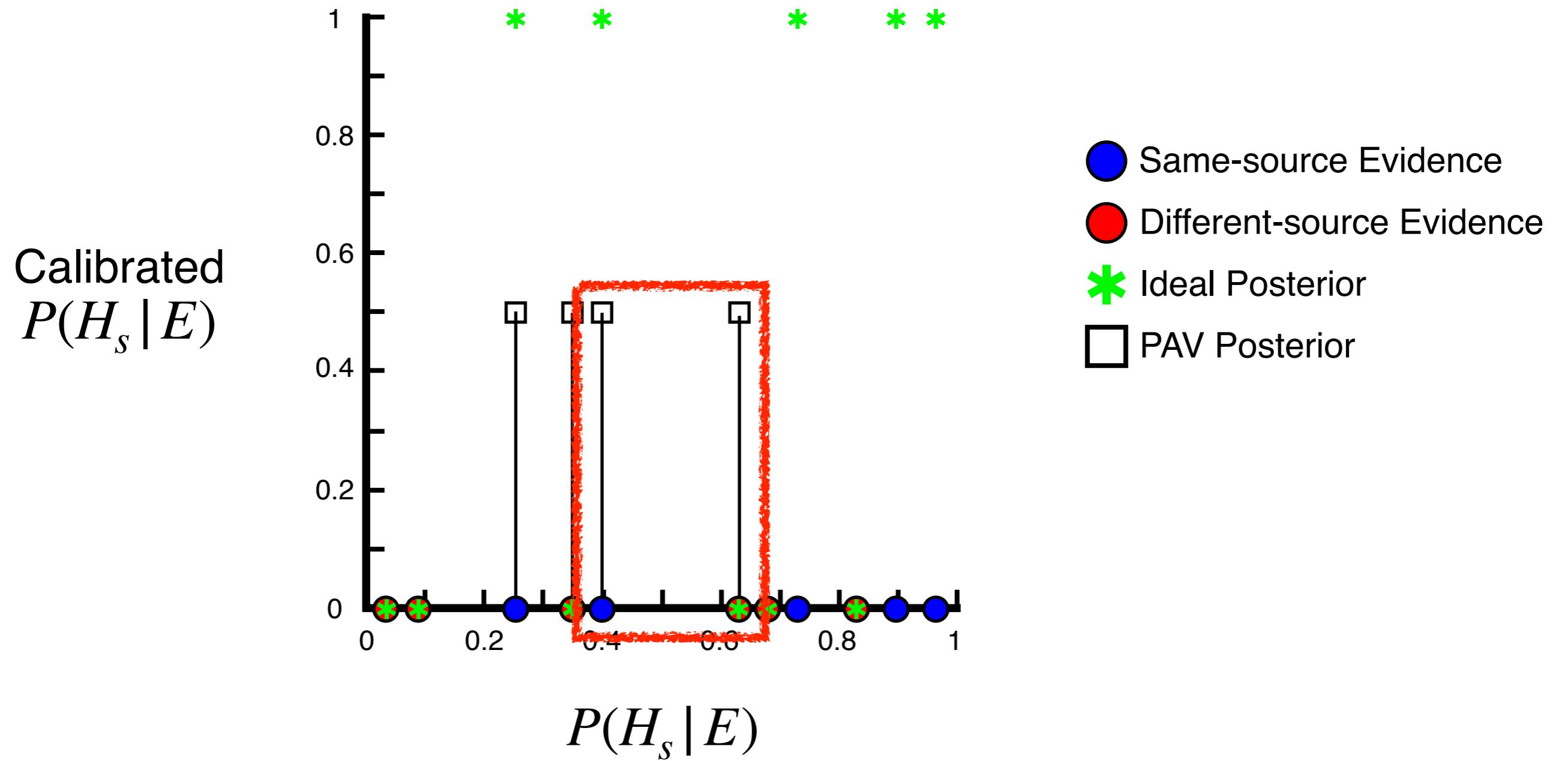
Aside: Calibration via Isotonic Regression



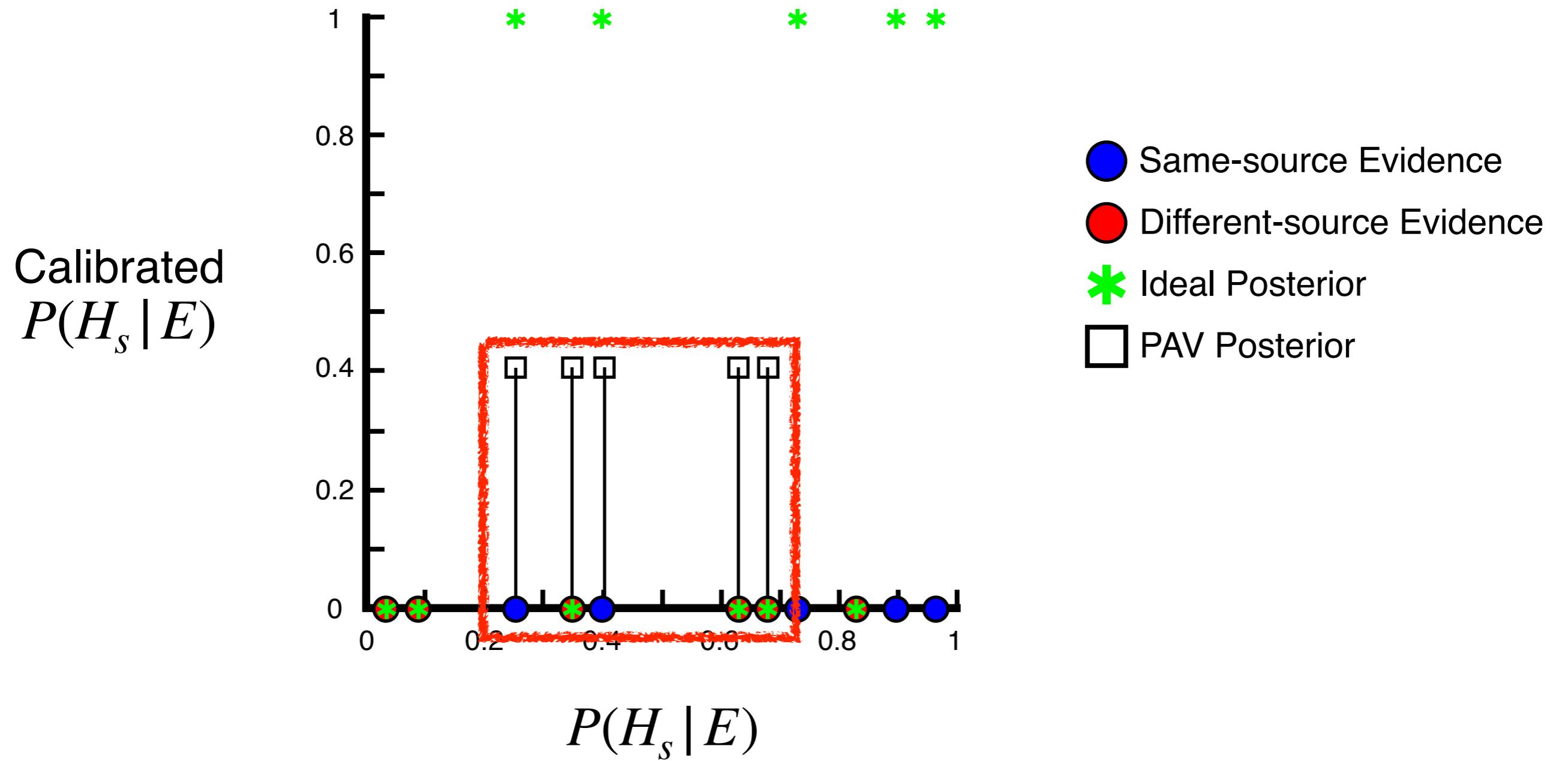
Aside: Calibration via Isotonic Regression



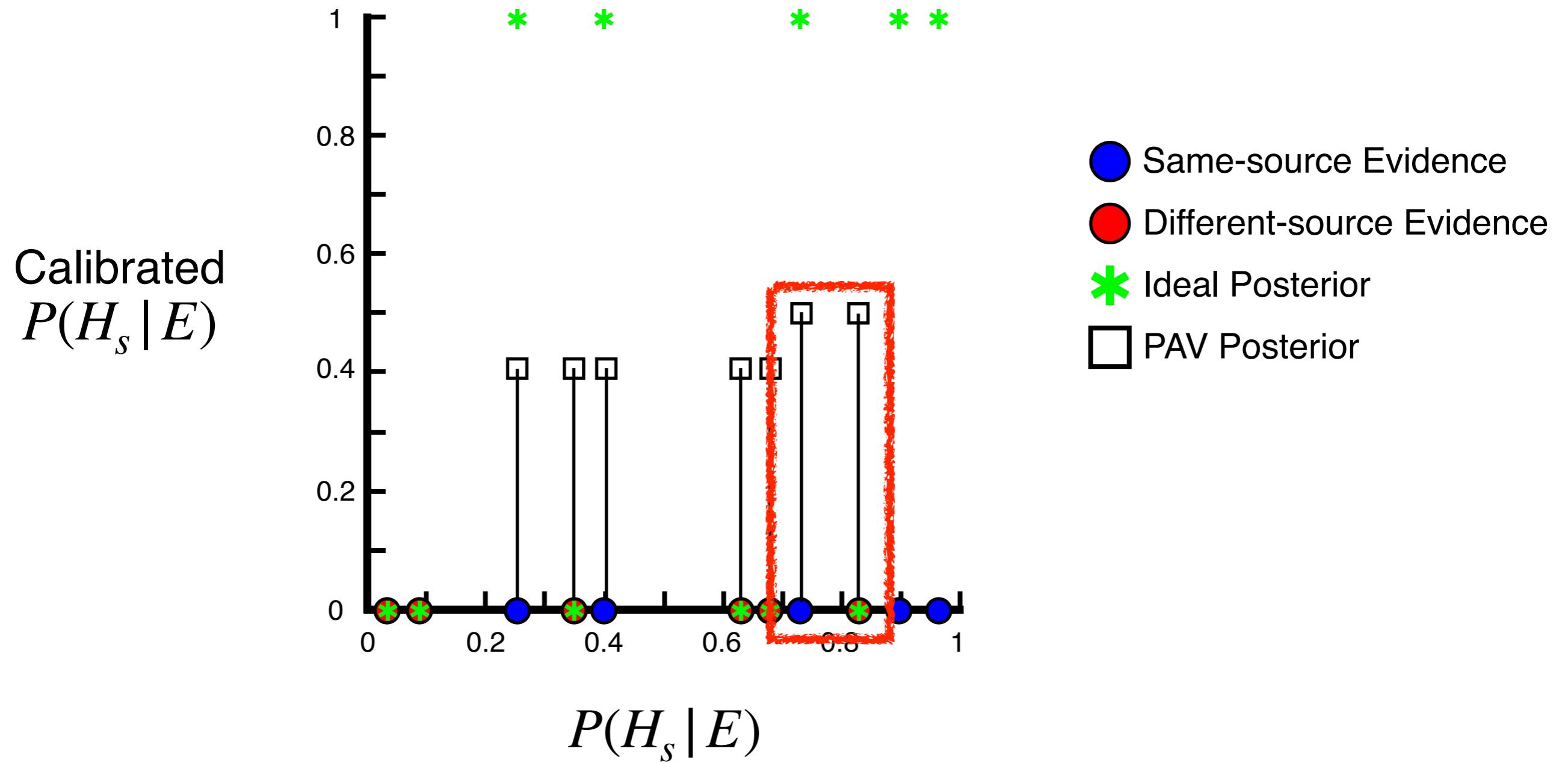
Aside: Calibration via Isotonic Regression



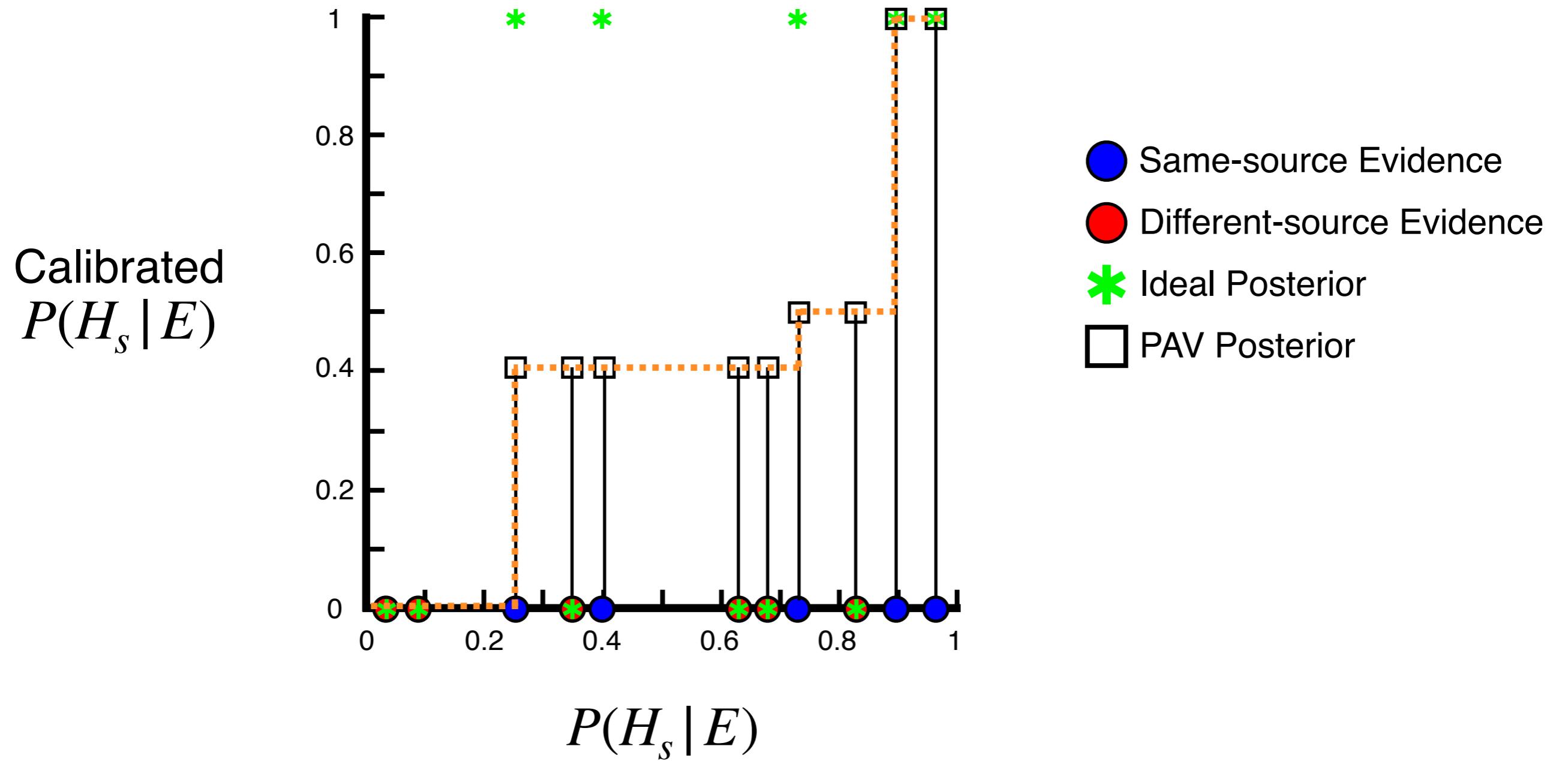
Aside: Calibration via Isotonic Regression



Aside: Calibration via Isotonic Regression

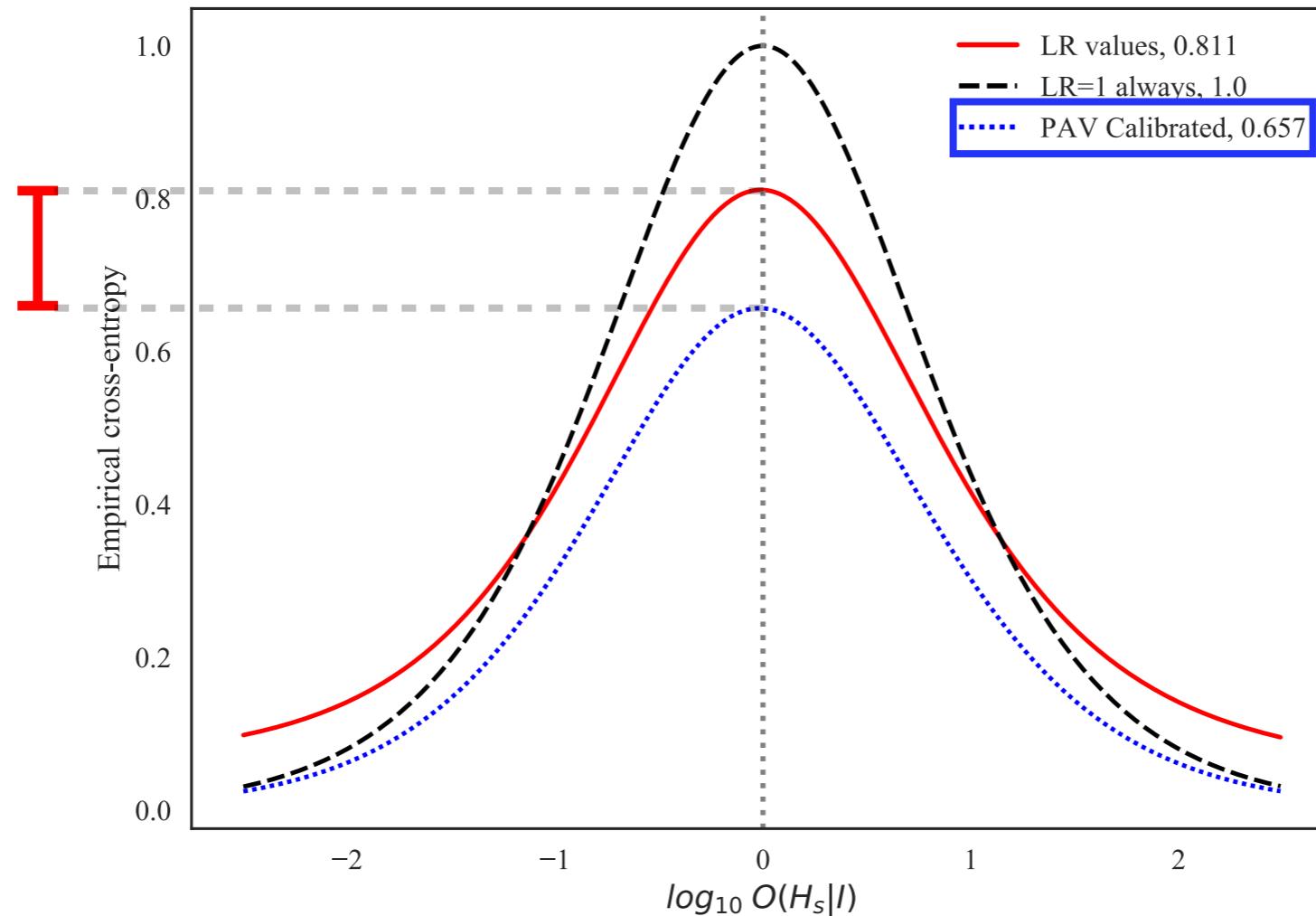


Aside: Calibration via Isotonic Regression



ECE Plot

Calibration Cost



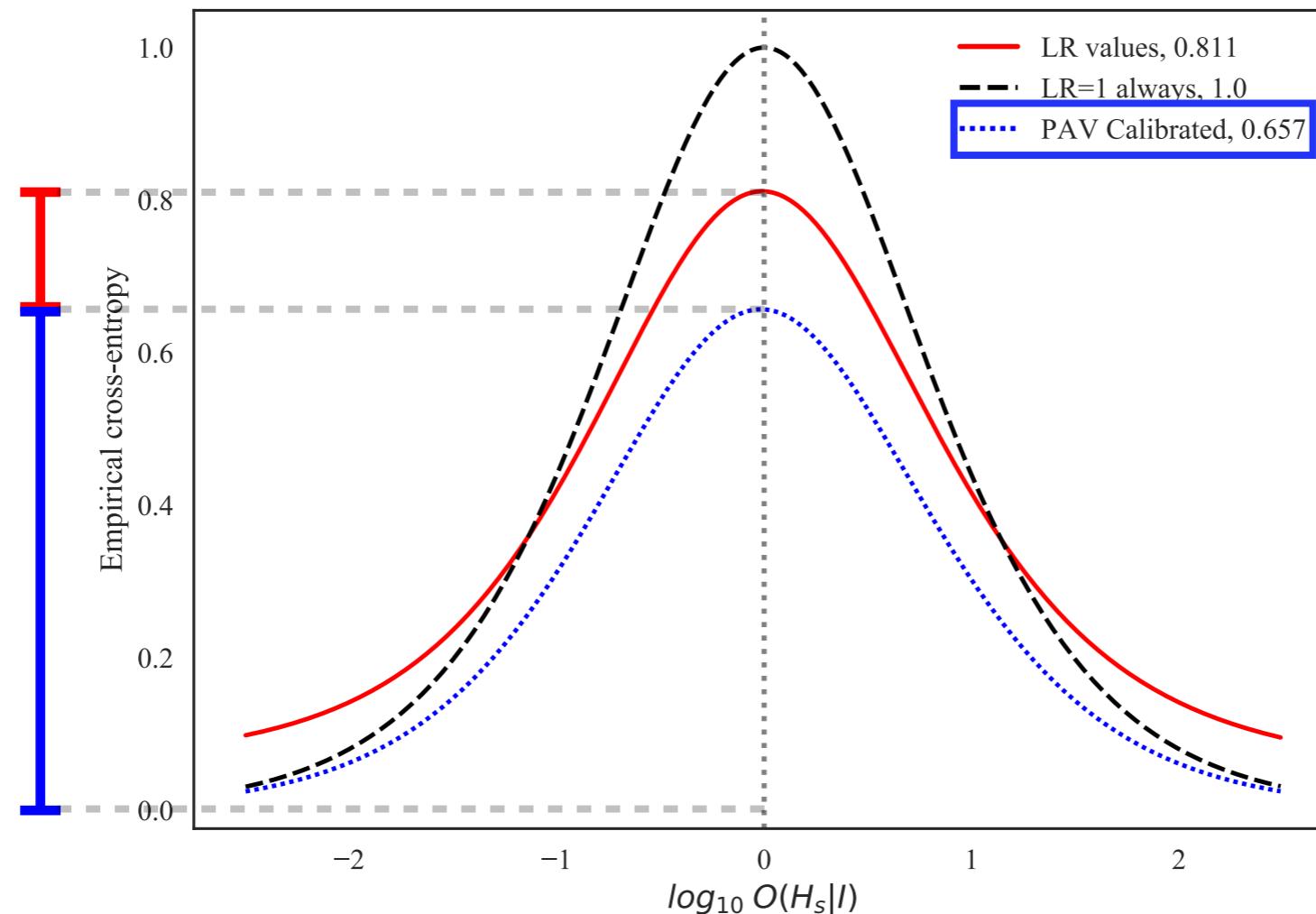
Isotonic Regression

[Zadrozny & Elkan, 2002]

ECE Plot

Calibration Cost

Discrimination Cost



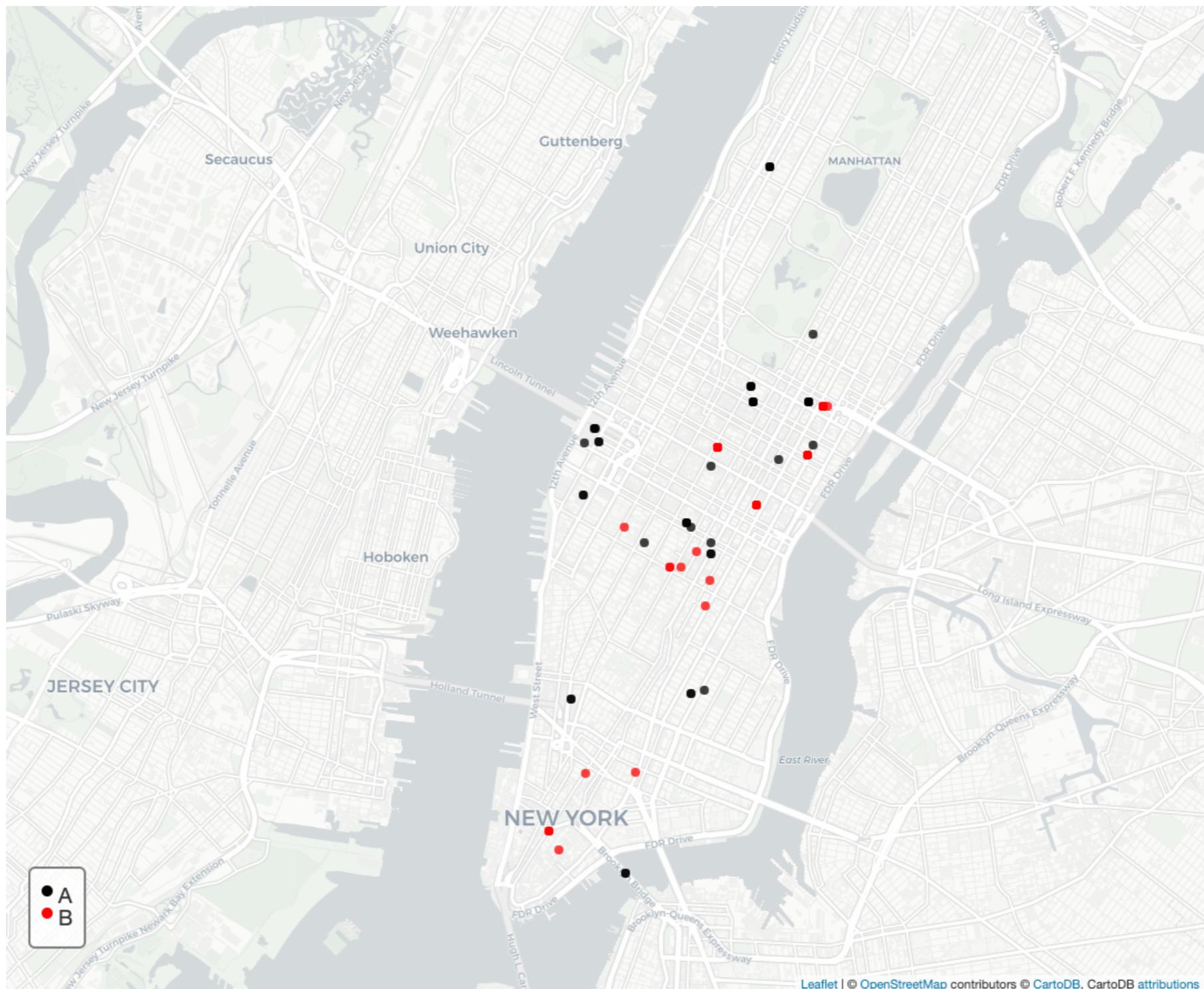
Isotonic Regression

[Zadrozny & Elkan, 2002]

CONTRIBUTION

Quantifying the Strength of Geolocated Event Evidence

CHAPTER #4 [Galbraith, Smyth & Stern, Digital Investigation 2020]



Revisiting the LR

$$LR = \frac{Pr(A, B | H_s)}{Pr(A, B | H_d)} = \frac{Pr(B | A, H_s)}{Pr(B | A, H_d)} \cdot \frac{Pr(A | H_s)}{Pr(A | H_d)}$$

Revisiting the LR

$$Pr(A | H_s) = Pr(A | H_d) = Pr(A)$$

$$LR = \frac{Pr(A, B | H_s)}{Pr(A, B | H_d)} = \frac{Pr(B | A, H_s)}{Pr(B | A, H_d)}$$

$$\frac{Pr(A | H_s)}{1 - Pr(A | H_s)}$$

Revisiting the LR

$$Pr(A | H_s) = Pr(A | H_d) = Pr(A)$$

$$LR = \frac{Pr(A, B | H_s)}{Pr(A, B | H_d)} = \frac{Pr(B | A, H_s)}{Pr(B | A, H_d)}$$

$$\frac{Pr(A | H_s)}{Pr(A | H_d)}$$

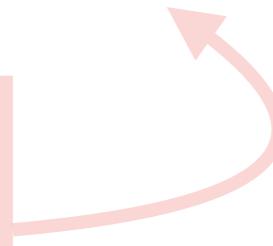
$$Pr(B | A, H_d) = Pr(B | H_d)$$

Revisiting the LR

$$Pr(A | H_s) = Pr(A | H_d) = Pr(A)$$

$$LR = \frac{Pr(A, B | H_s)}{Pr(A, B | H_d)} = \frac{Pr(B | A, H_s)}{Pr(B | A, H_d)}$$

$$\frac{Pr(A | H_s)}{Pr(A | H_d)}$$



$$Pr(B | A, H_d) = Pr(B | H_d)$$

$$\Rightarrow LR = \frac{f(B | A, H_s)}{f(B | H_d)}$$

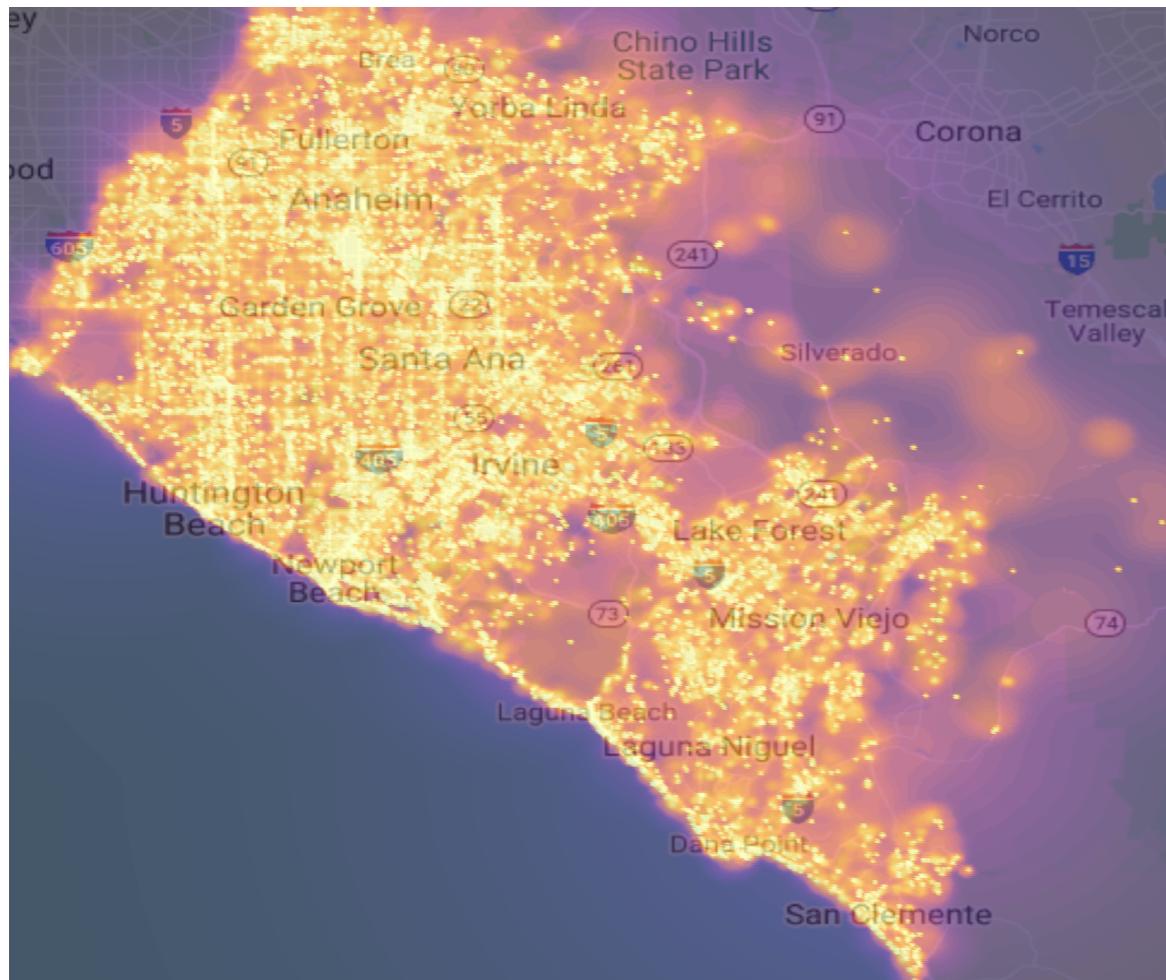
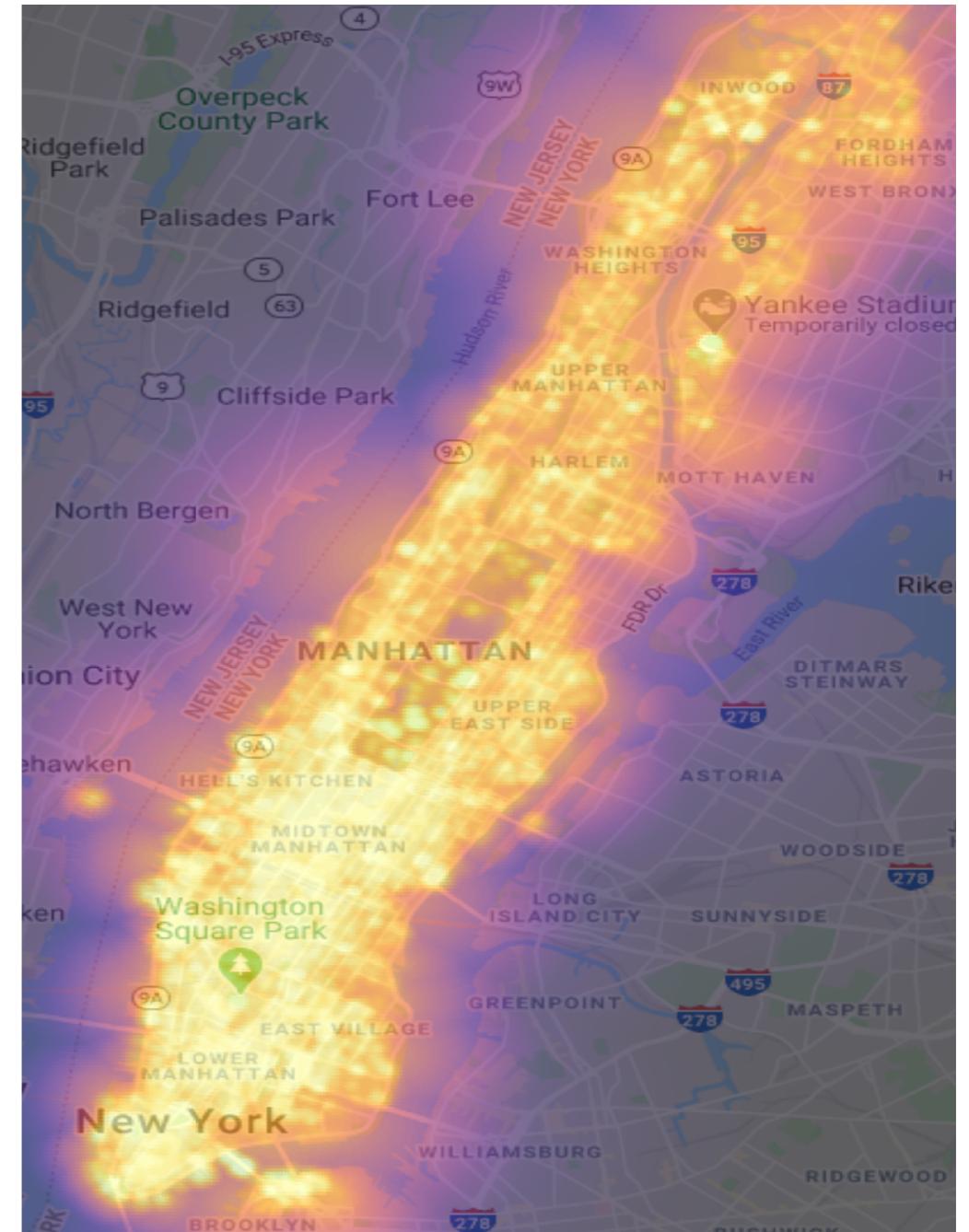
$$LR = \frac{f(B | A, H_s)}{f(B | H_d)}$$

$$\hat{f}(B | H_d) = \prod_{j=1}^{n_b} f_{KD}(s_j^b | \mathcal{D})$$

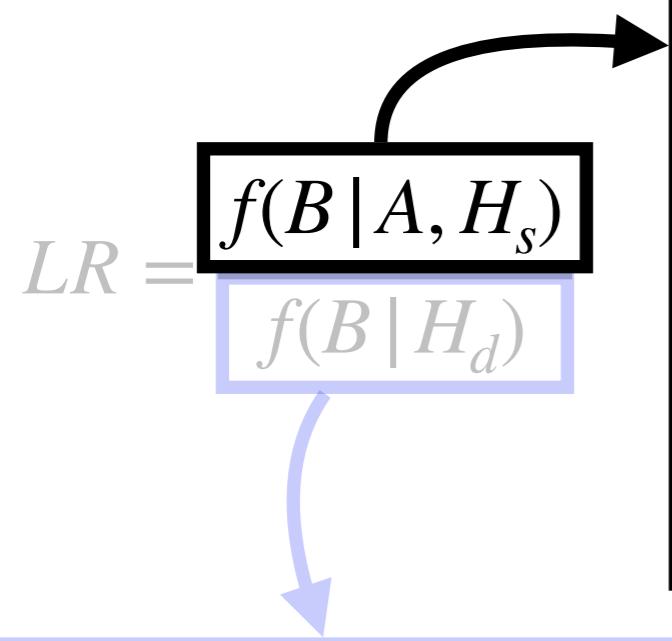
$$LR = \frac{f(B | A, H_s)}{f(B | H_d)}$$

$$f(B | H_d)$$

$$\hat{f}(B | H_d) = \prod_{j=1}^{n_b} f_{KD}(s_j^b | \mathcal{D})$$



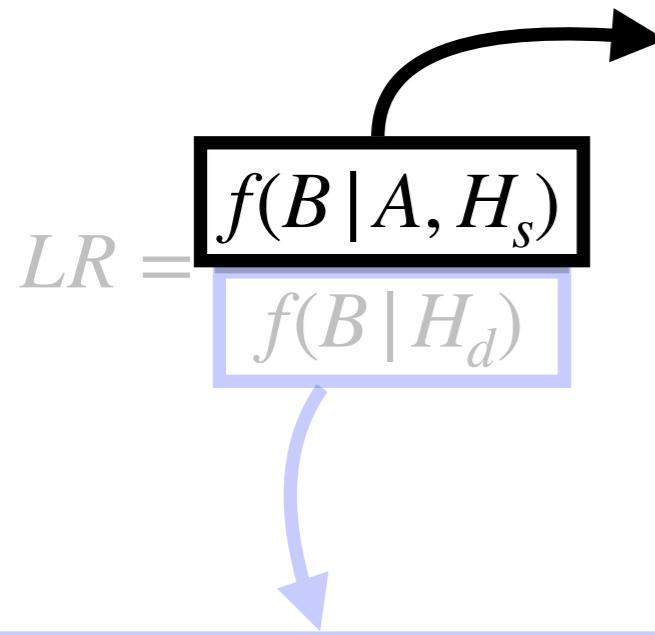
Adaptive Bandwidth
Kernel Density Estimators
[Breiman et al., 1977]



$$\hat{f}(B | A, H_s) = \prod_{j=1}^{n_b} f_{MKD}(s_j^b | A, \mathcal{D}, \alpha)$$

[Lichman & Smyth, 2014]

$$\hat{f}(B | H_d) = \prod_{j=1}^{n_b} f_{KD}(s_j^b | \mathcal{D})$$



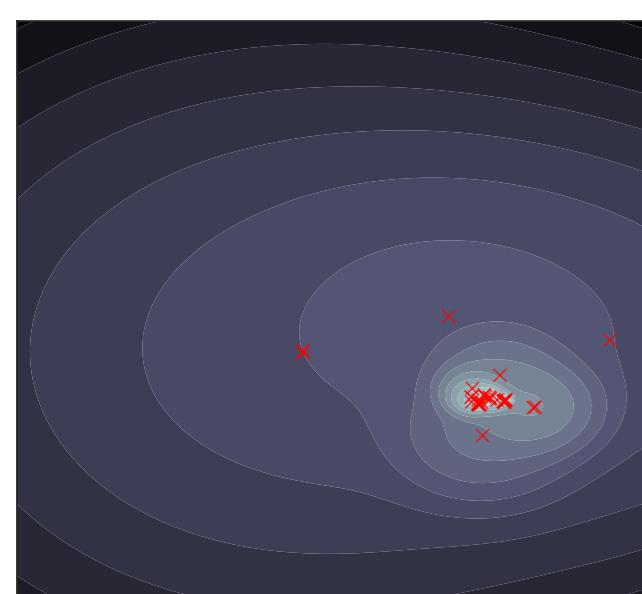
$$\hat{f}(B | A, H_s) = \prod_{j=1}^{n_b} f_{MKD}(s_j^b | A, \mathcal{D}, \alpha)$$

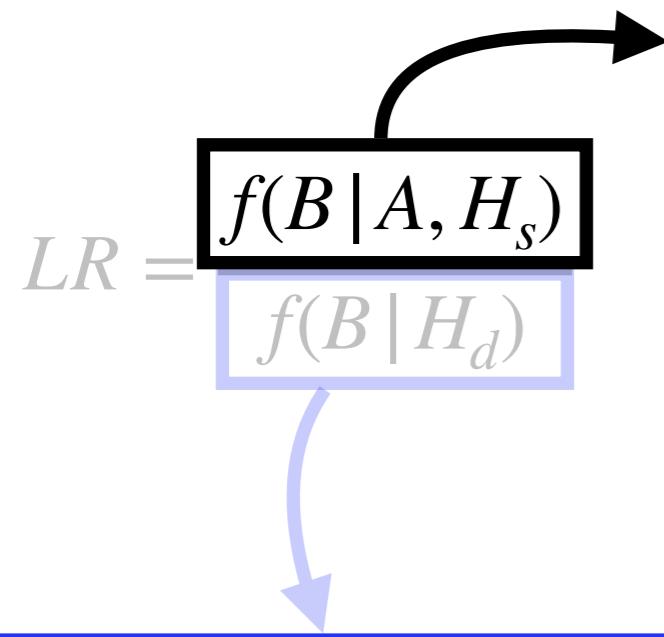
$$f_{MKD}(s_j^b | A, \mathcal{D}, \alpha) = \alpha f_{KD}(s_j^b | A)$$

Individual
Component

[Lichman & Smyth, 2014]

$$\hat{f}(B | H_d) = \prod_{j=1}^{n_b} f_{KD}(s_j^b | \mathcal{D})$$





$$\hat{f}(B | A, H_s) = \prod_{j=1}^{n_b} f_{MKD}(s_j^b | A, \mathcal{D}, \alpha)$$

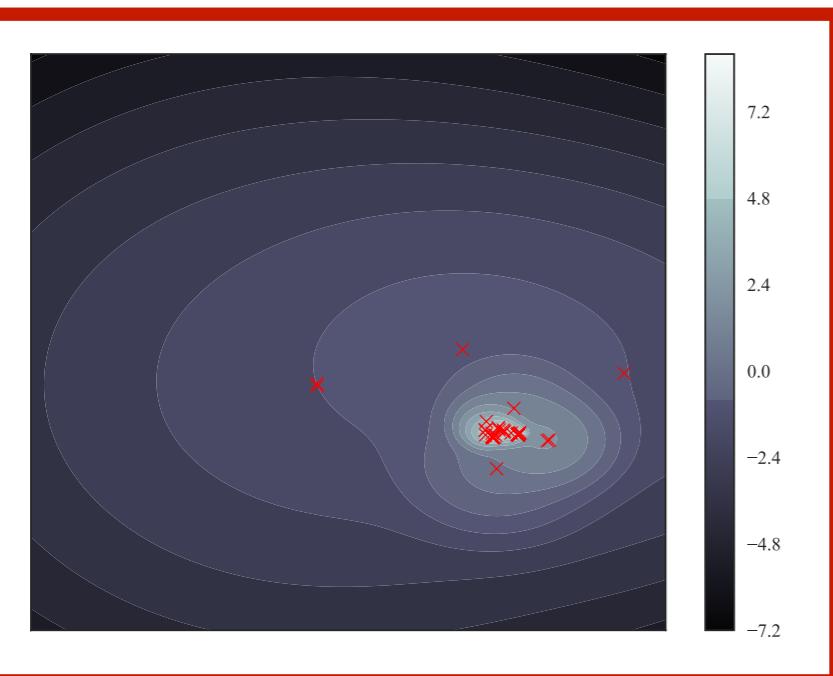
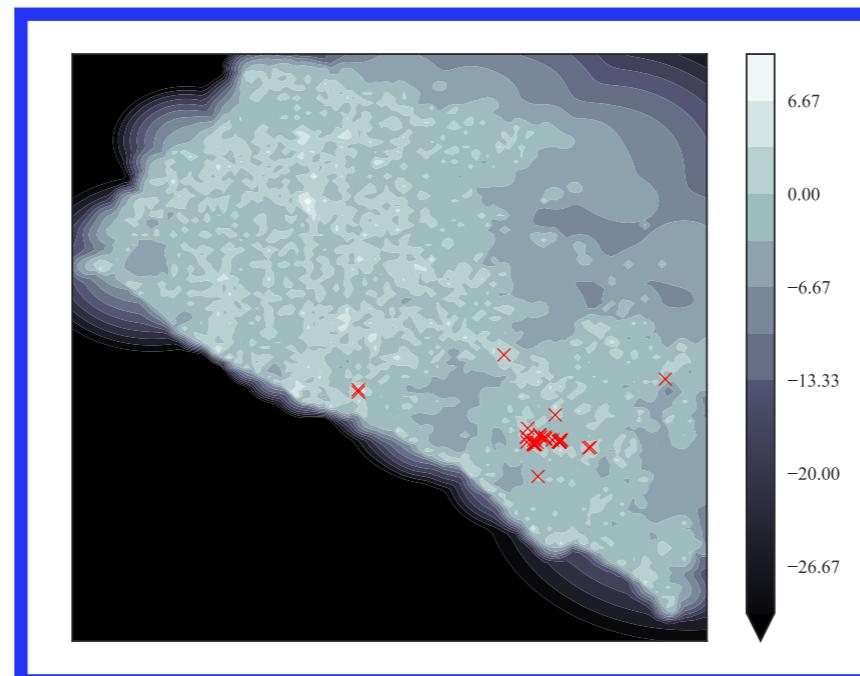
$$f_{MKD}(s_j^b | A, \mathcal{D}, \alpha) = \alpha f_{KD}(s_j^b | A) + (1 - \alpha) f_{KD}(s_j^b | \mathcal{D})$$

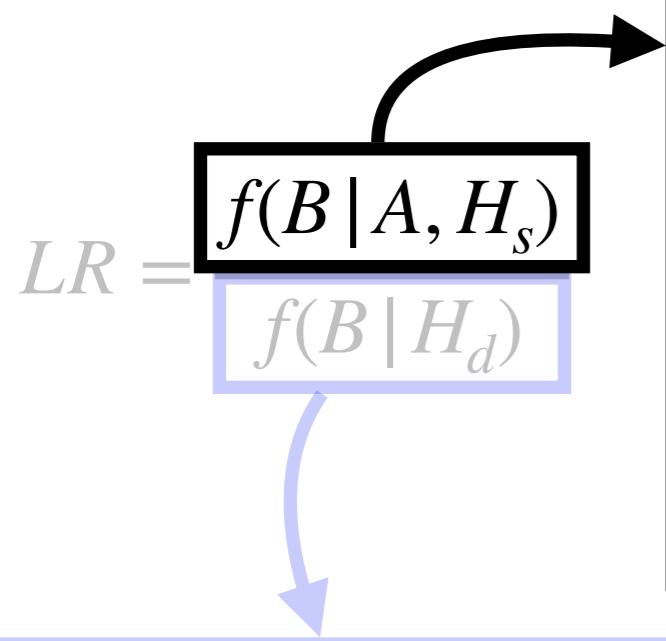
Individual Component

Population Component

[Lichman & Smyth, 2014]

$$\hat{f}(B | H_d) = \prod_{j=1}^{n_b} f_{KD}(s_j^b | \mathcal{D})$$





$$\hat{f}(B | A, H_s) = \prod_{j=1}^{n_b} f_{MKD}(s_j^b | A, \mathcal{D}, \alpha)$$

$$f_{MKD}(s_j^b | A, \mathcal{D}, \alpha) = \alpha f_{KD}(s_j^b | A) + (1 - \alpha) f_{KD}(s_j^b | \mathcal{D})$$

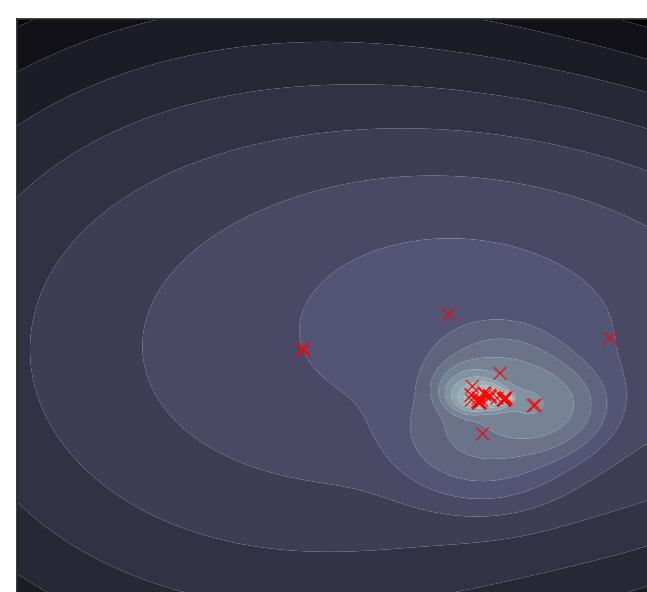
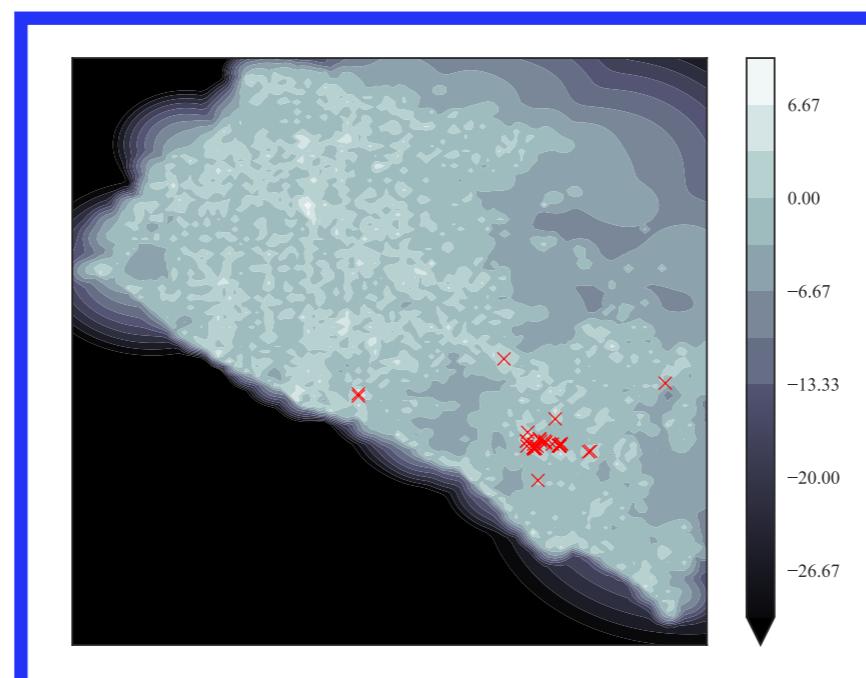
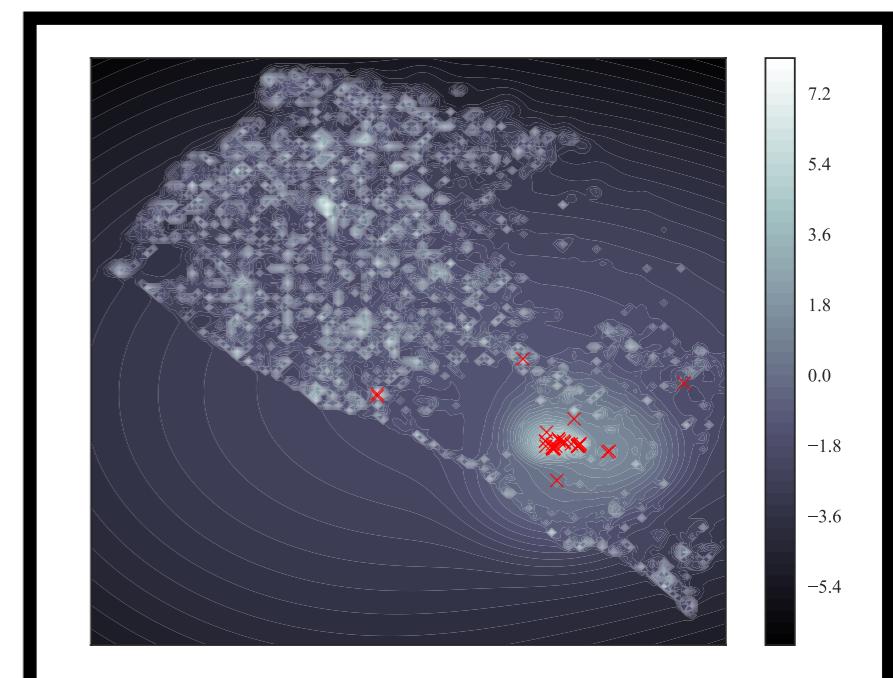
Mixing
Weight

Individual
Component

Population
Component

[Lichman & Smyth, 2014]

$$\hat{f}(B | H_d) = \prod_{j=1}^{n_b} f_{KD}(s_j^b | \mathcal{D})$$



$\alpha = 0.8$

$$LR = \frac{f(B | A, H_s)}{f(B | H_d)}$$

$$\hat{f}(B | A, H_s) = \prod_{j=1}^{n_b} f_{MKD}(s_j^b | A, \mathcal{D}, \alpha)$$

$$f_{MKD}(s_j^b | A, \mathcal{D}, \alpha) = \alpha f_{KD}(s_j^b | A) + (1 - \alpha) f_{KD}(s_j^b | \mathcal{D})$$

Mixing
Weight

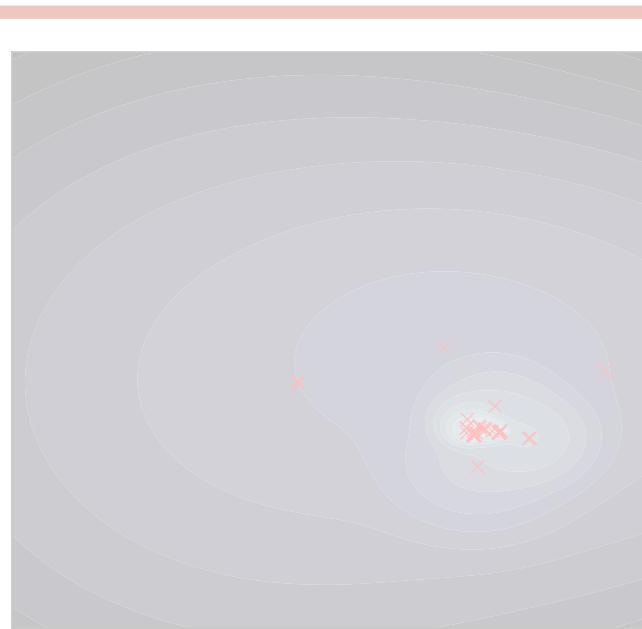
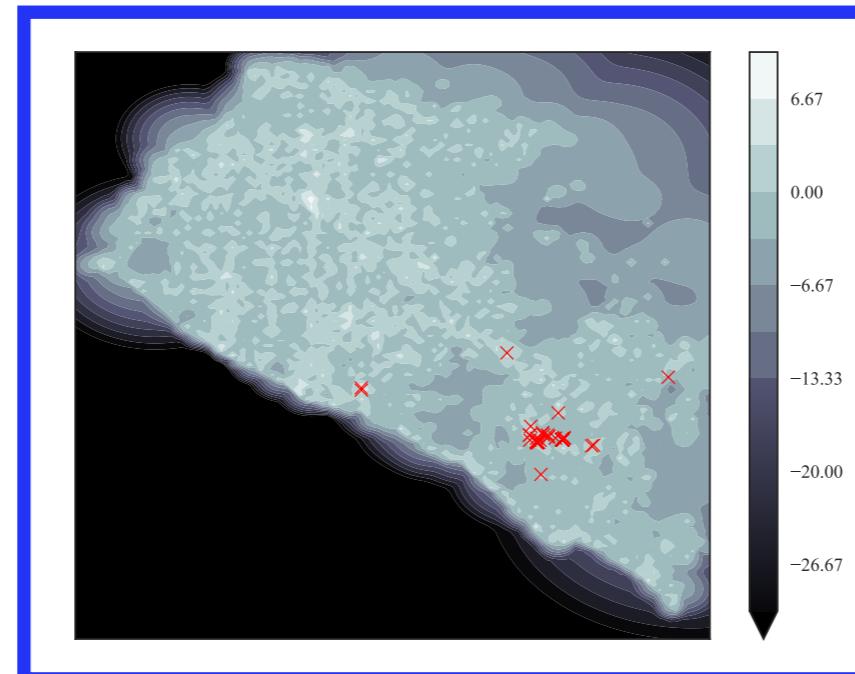
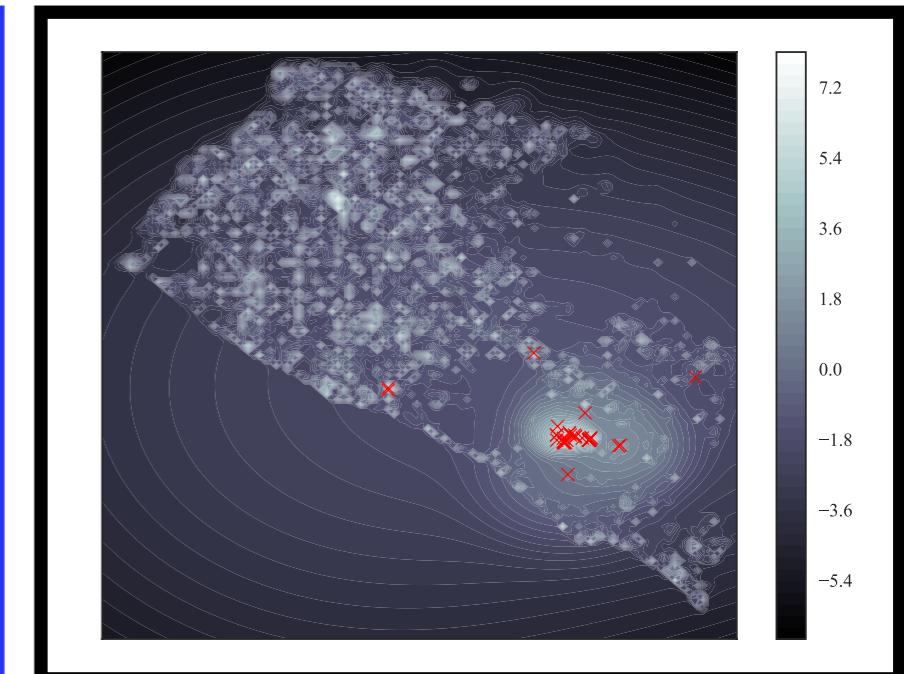
Individual
Component

Population
Component

[Lichman & Smyth, 2014]

$$\hat{f}(B | H_d) = \prod_{j=1}^{n_b} f_{KD}(s_j^b | \mathcal{D})$$

$$\widehat{LR} = \frac{\hat{f}(B | A, H_s)}{\hat{f}(B | H_d)}$$



$\alpha = 0.8$

What about score-based approaches?

Score Functions

- Techniques to characterize spatial point patterns generally fall into two categories [Haggett, 1977]

Score Functions

- Techniques to characterize spatial point patterns generally fall into two categories [Haggett, 1977]
 - Distance-based
 - Area-based

Score Functions

- Techniques to characterize spatial point patterns generally fall into two categories [Haggett, 1977]
 - Distance-based
 - Area-based
- Use distance-based score functions $\Delta(A, B)$ to quantify the similarity of the points within the sets A and B

Score Functions

- Techniques to characterize spatial point patterns generally fall into two categories [Haggett, 1977]
 - Distance-based
 - Area-based
- Use distance-based score functions $\Delta(A, B)$ to quantify the similarity of the points within the sets A and B
 - Average nearest-neighbor distance $\overline{D}_{min}(B, A \mid \Omega^b)$
 - Earth-mover's distance $EMD(B, A \mid \Omega^b, \Omega^a)$

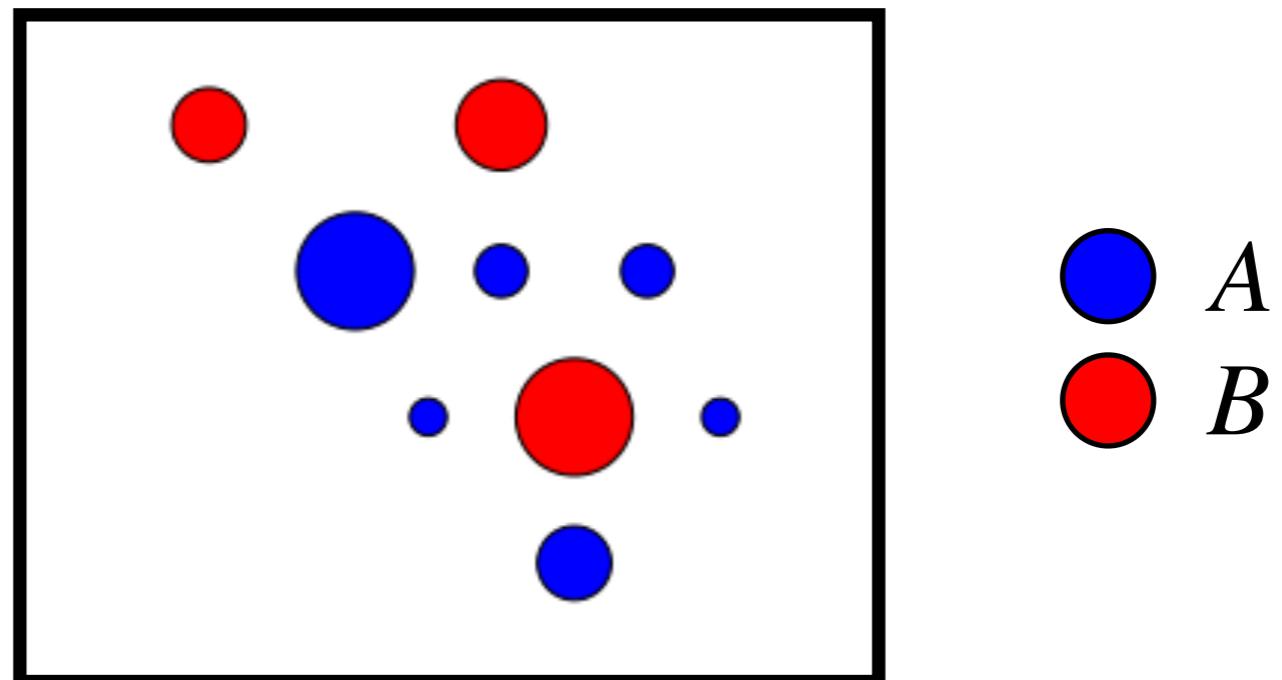
Score Functions

- Techniques to characterize spatial point patterns generally fall into two categories [Haggett, 1977]
 - Distance-based
 - Area-based
- Use distance-based score functions $\Delta(A, B)$ to quantify the similarity of the points within the sets A and B
 - Average nearest-neighbor distance $\bar{D}_{min}(B, A | \Omega^b)$
 - Earth-mover's distance $EMD(B, A | \Omega^b, \Omega^a)$
- Incorporate area-based information via weights Ω^a, Ω^b

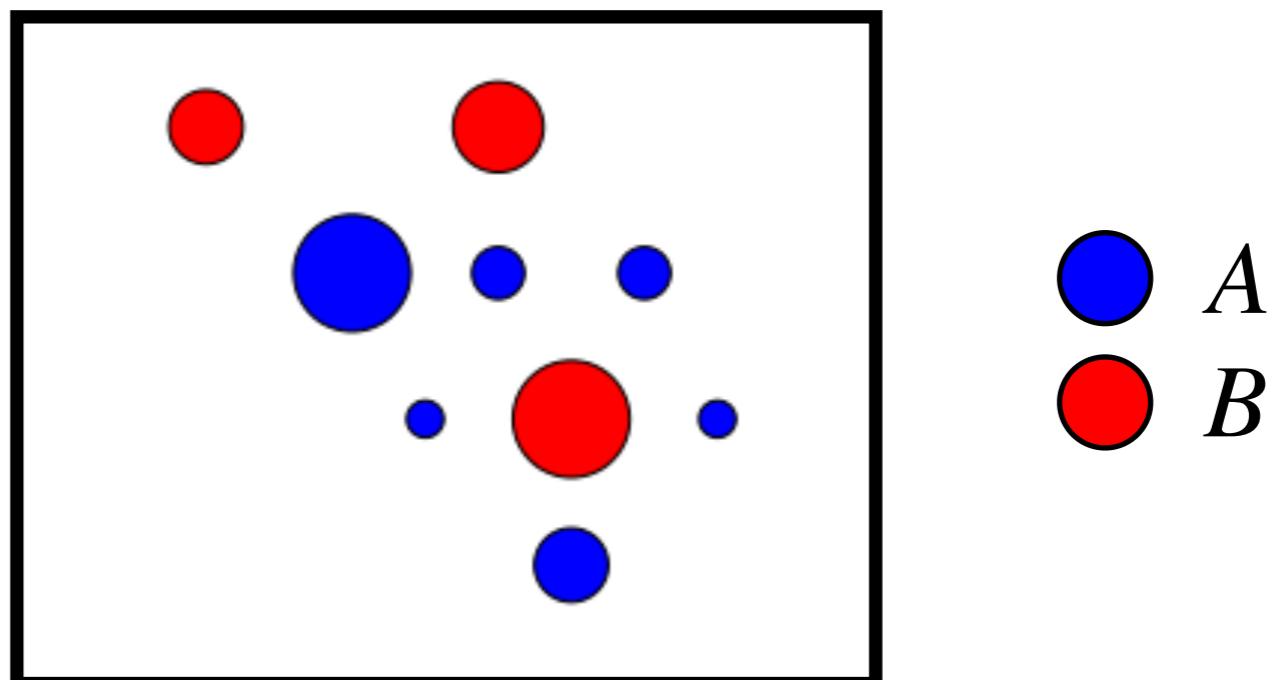
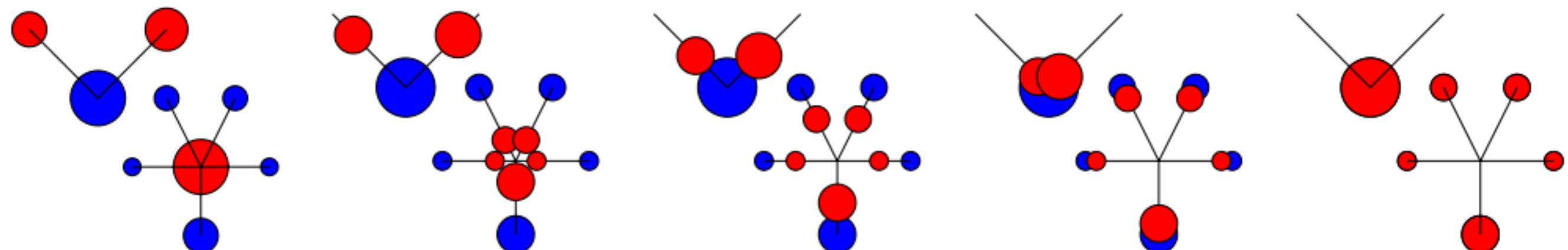
Score Functions

- Techniques to characterize spatial point patterns generally fall into two categories [Haggett, 1977]
 - Distance-based
 - Area-based
- Use distance-based score functions $\Delta(A, B)$ to quantify the similarity of the points within the sets A and B
 - Average nearest-neighbor distance $\bar{D}_{min}(B, A | \Omega^b)$
 - Earth-mover's distance $EMD(B, A | \Omega^b, \Omega^a)$
- Incorporate area-based information via weights Ω^a, Ω^b

Earth-mover's distance
 $EMD(B, A \mid \Omega^b, \Omega^a)$



Earth-mover's distance
 $EMD(B, A \mid \Omega^b, \Omega^a)$



Weights Ω^a, Ω^b



[Lichman, 2017]

Weights Ω^a, Ω^b

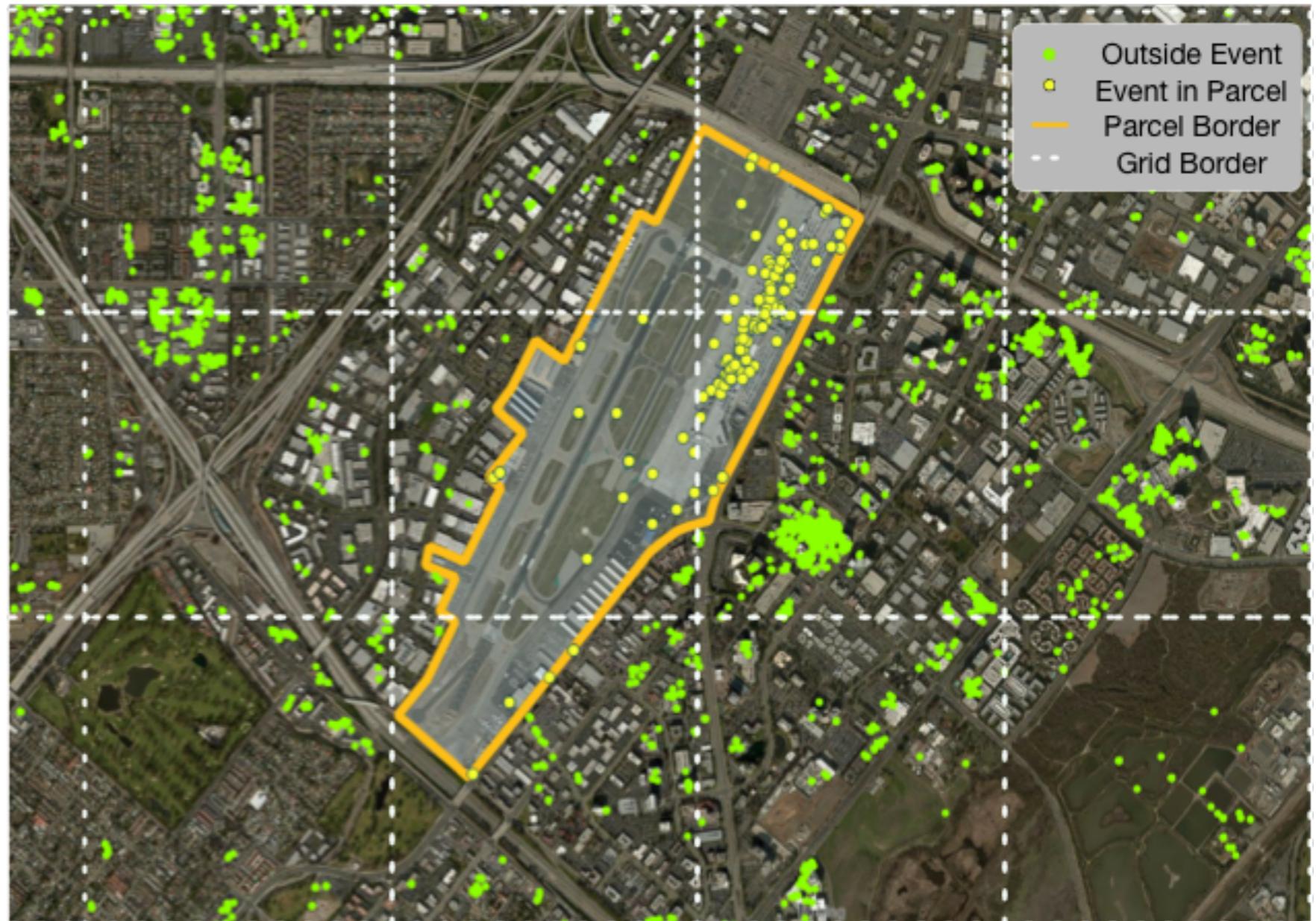
Uniform

Visits

$$\omega_j \propto [n_{vis}(\ell(s_j))]^{-1}$$

Accounts

$$\omega_j \propto [n_{acc}(\ell(s_j))]^{-1}$$



[Lichman, 2017]

Weights Ω^a, Ω^b

Uniform

Visits

$$\omega_j \propto [n_{vis}(\ell(s_j))]^{-1}$$

Accounts

$$\omega_j \propto [n_{acc}(\ell(s_j))]^{-1}$$



[Lichman, 2017]

Case Study

- Collected Twitter data from May 2015 to Feb 2016
 - Orange County, CA
 - Manhattan, New York, NY
- *A* and *B* are consecutive months from the same account

Region	Accounts	Visits in <i>A</i>	Visits in <i>B</i>
OC	6,714	44,310 (6.6)	38,697 (5.8)
NY	13,523	72,799 (5.4)	65,852 (4.9)

Case Study

- Collected Twitter data from May 2015 to Feb 2016
 - Orange County, CA
 - Manhattan, New York, NY
- A and B are consecutive months from the same account

Region	Accounts	Visits in A	Visits in B
OC	6,714	44,310 (6.6)	38,697 (5.8)
NY	13,523	72,799 (5.4)	65,852 (4.9)

- Results based on stratified sample based on n_a and n_b for different-source evidence

Results

Region	Method ¹	TP Rate ²	FP Rate ²	AUC
OC	LR	0.380	0.038	0.845
	SLR _{EMD}	0.614	0.162	0.783
	CMP _{EMD}	0.448	0.208	0.784
NY	LR	0.285	0.089	0.768
	SLR _{EMD}	0.511	0.235	0.685
	CMP _{EMD}	0.283	0.161	0.686

(1) LR with $\alpha(n_a)$ weights; SLR_{EMD} & CMP_{EMD} with account weights

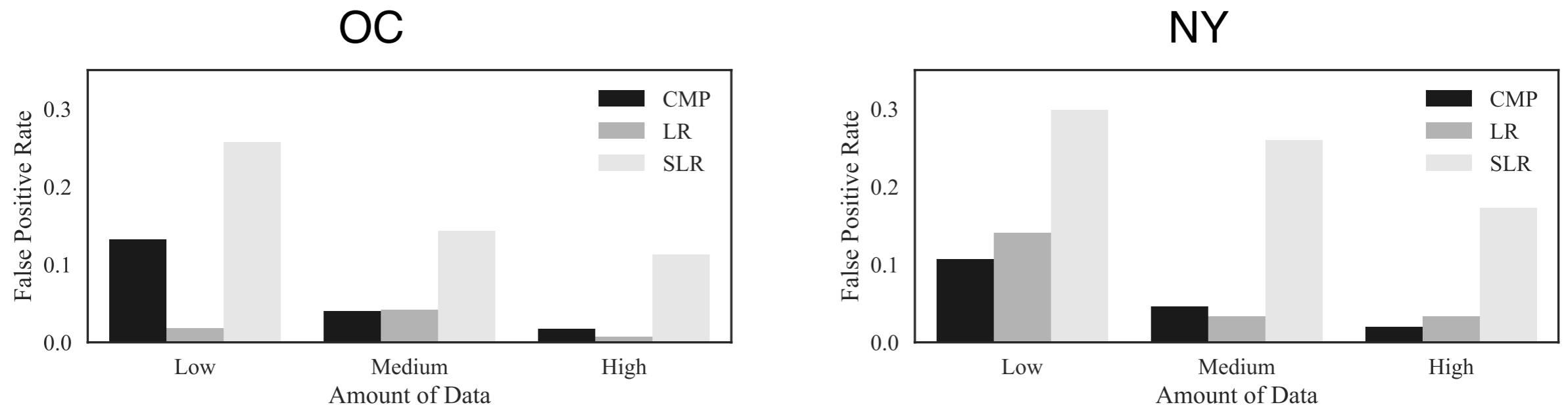
(2) LR & SLR threshold is 1; CMP threshold is 0.05

Results

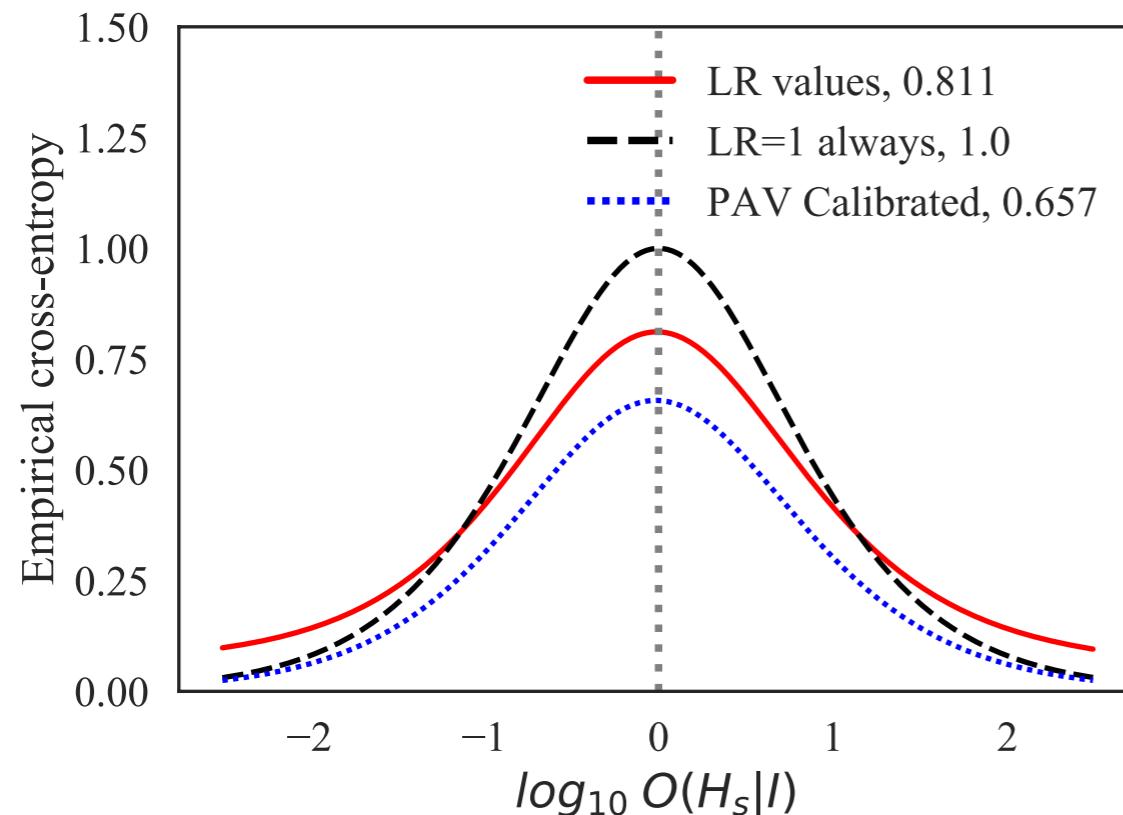
Region	Method ¹	TP Rate ²	FP Rate ²	AUC
OC	LR	0.380	0.038	0.845
	SLR _{EMD}	0.614	0.162	0.783
	CMP _{EMD}	0.448	0.208	0.784
NY	LR	0.285	0.089	0.768
	SLR _{EMD}	0.511	0.235	0.685
	CMP _{EMD}	0.283	0.161	0.686

(1) LR with $\alpha(n_a)$ weights; SLR_{EMD} & CMP_{EMD} with account weights

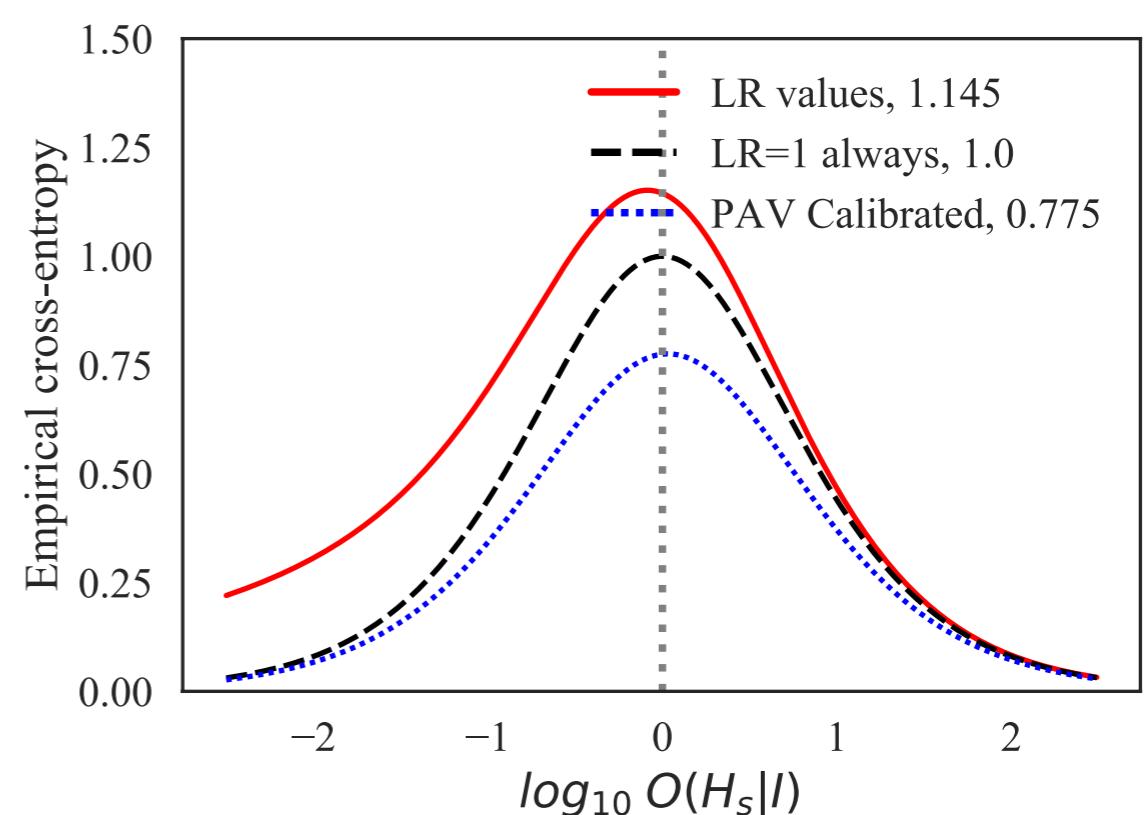
(2) LR & SLR threshold is 1; CMP threshold is 0.05



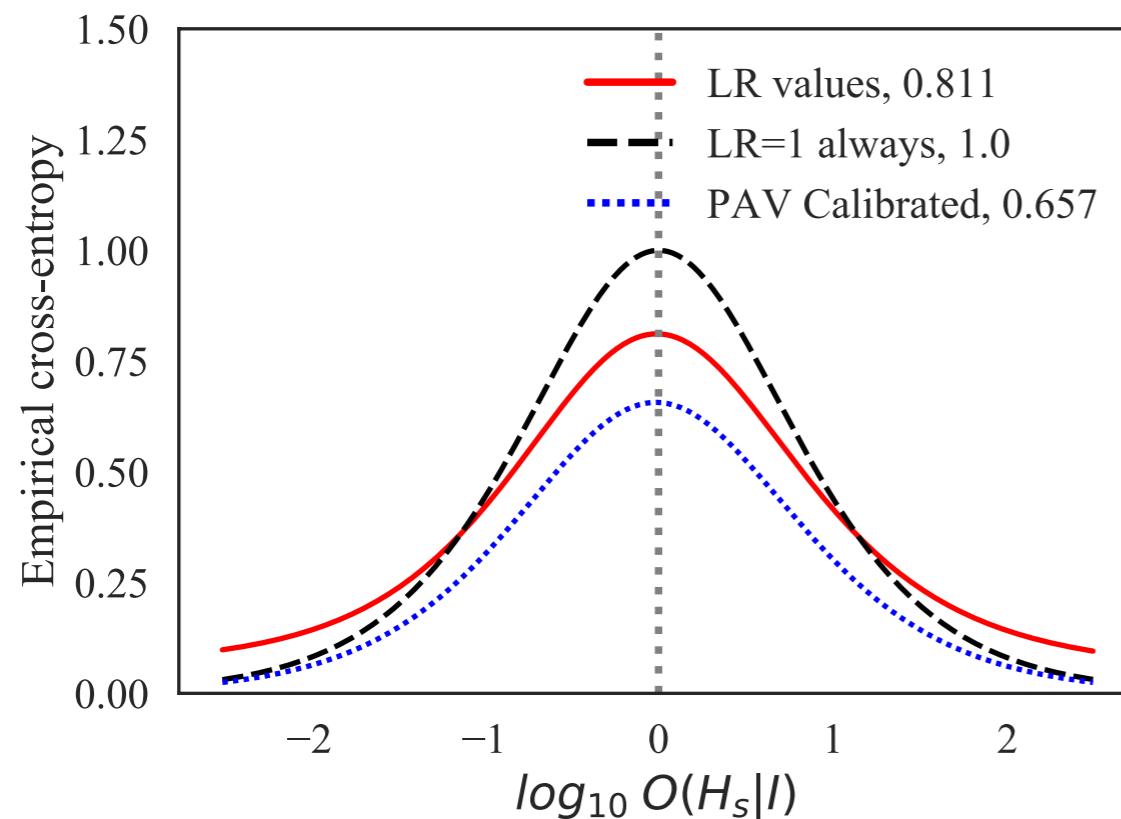
LR; $\alpha(n_a)$ weights



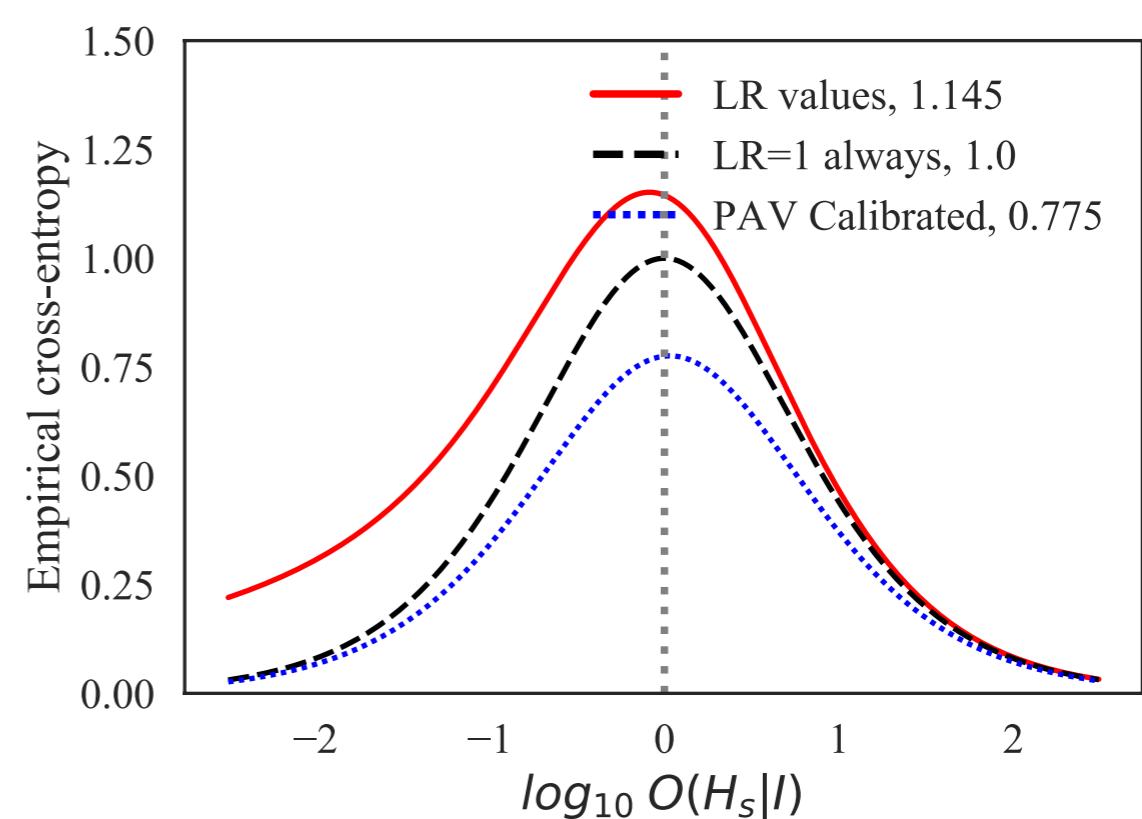
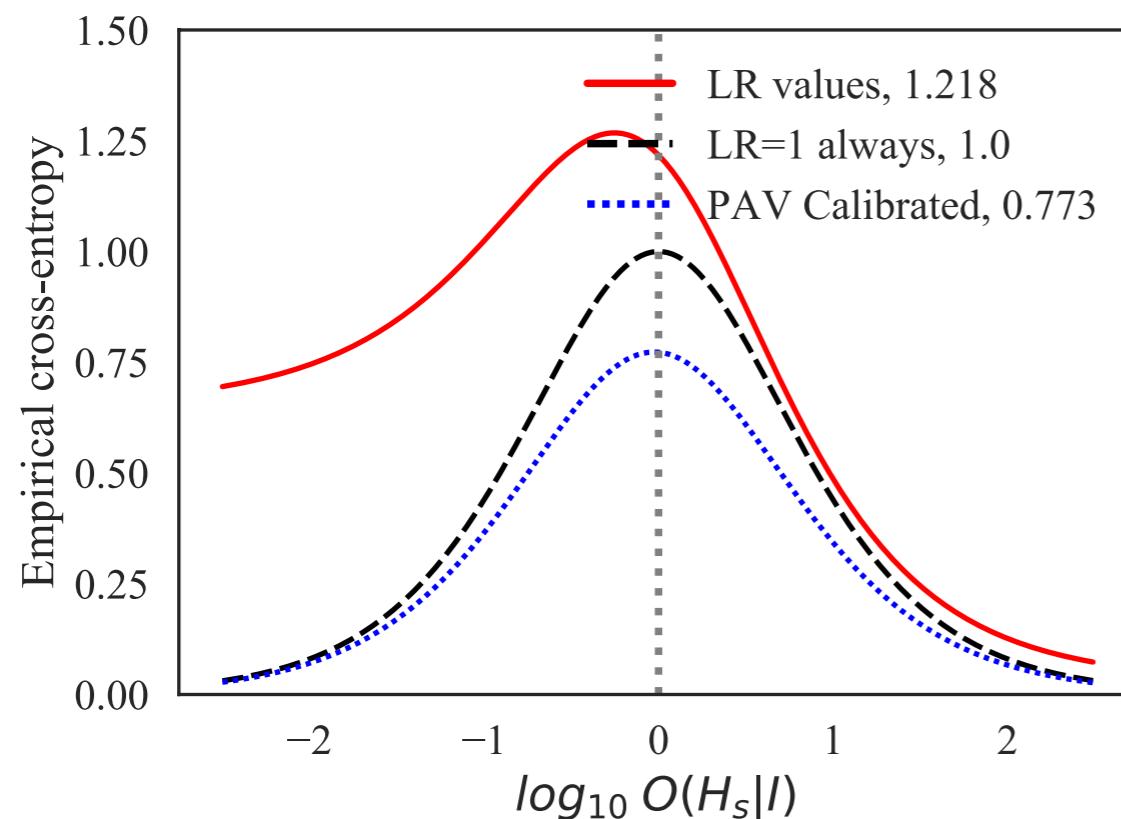
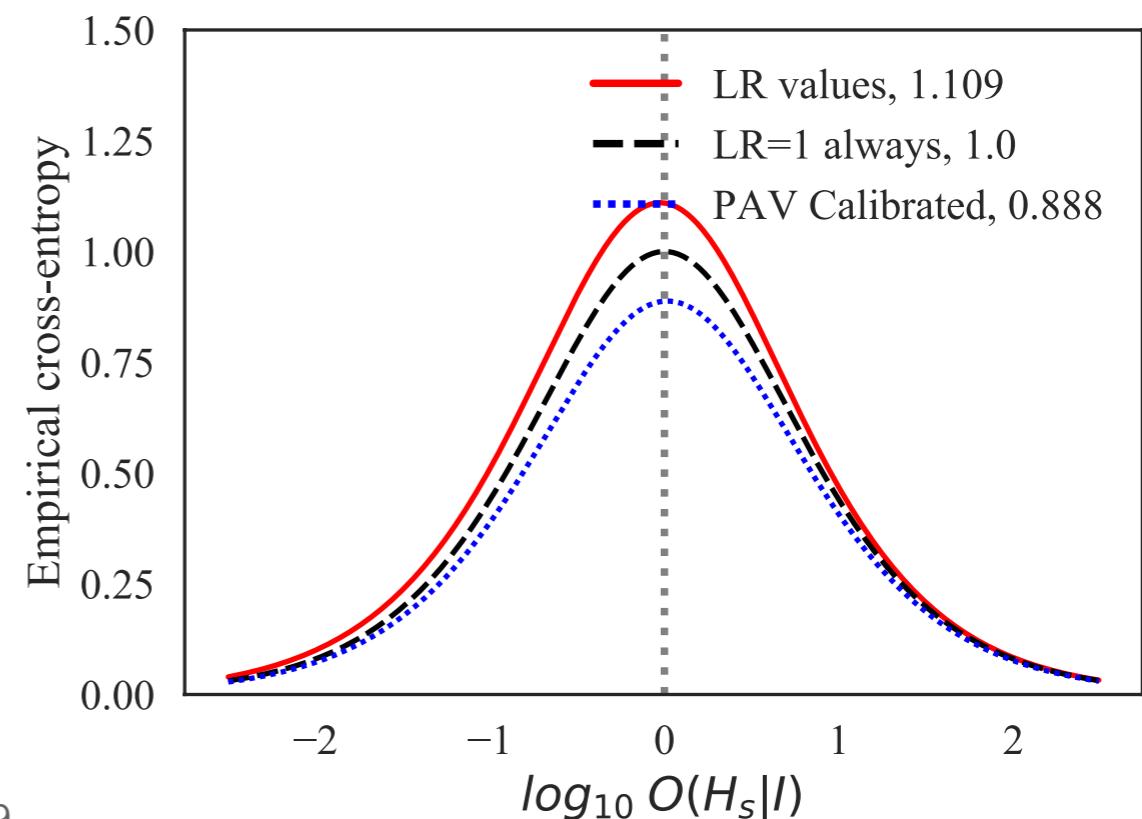
SLR_{EMD} ; account weights



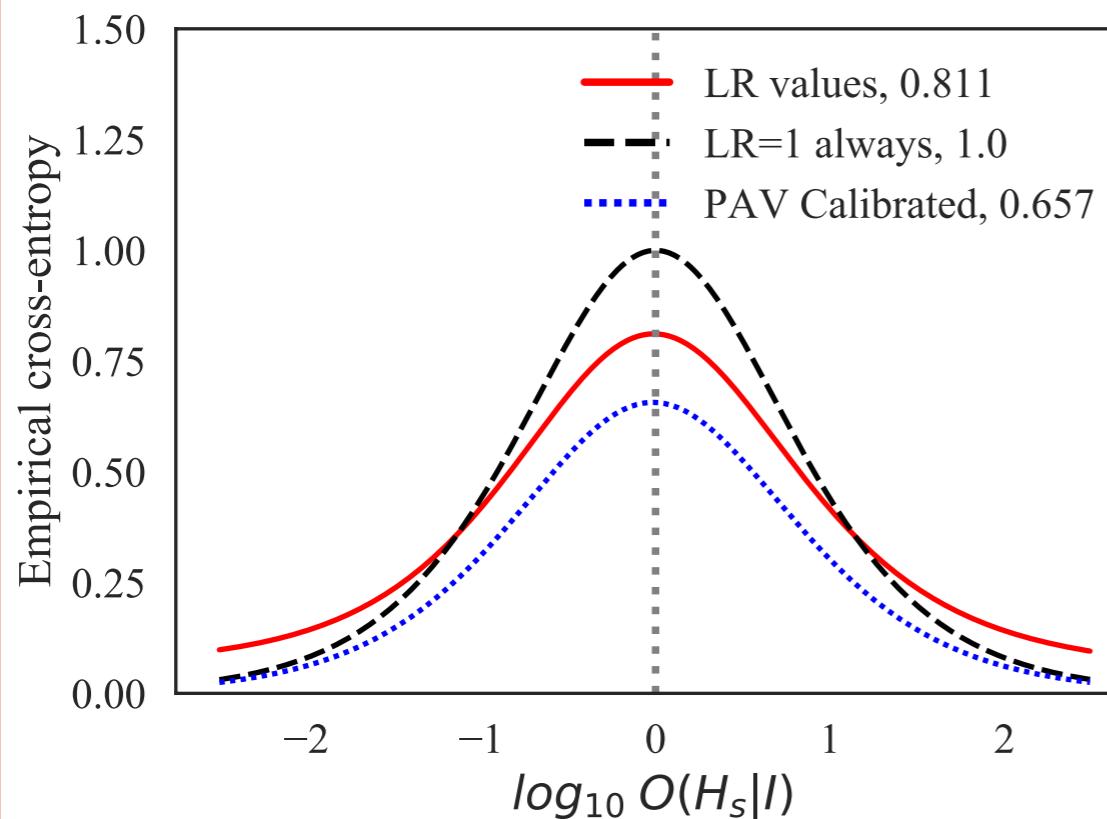
LR; $\alpha(n_a)$ weights



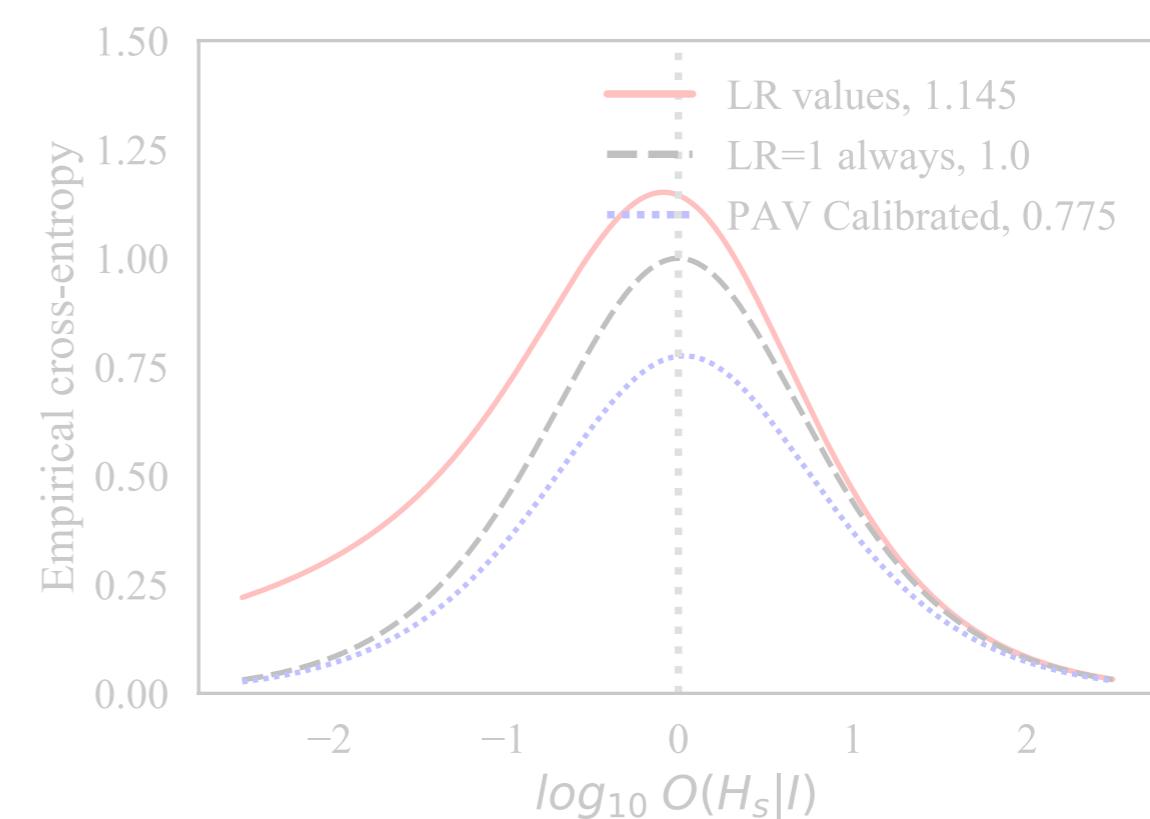
SLR_{EMD} ; account weights



LR; $\alpha(n_a)$ weights

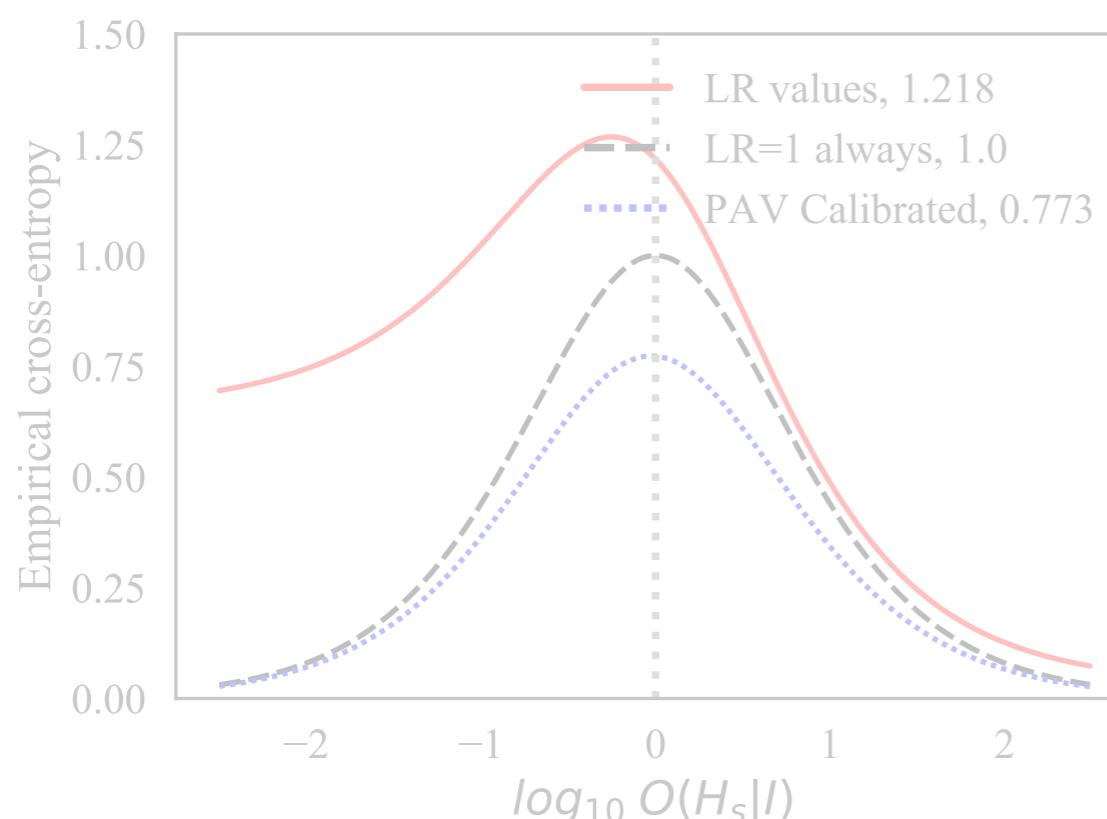


SLR_{EMD} ; account weights

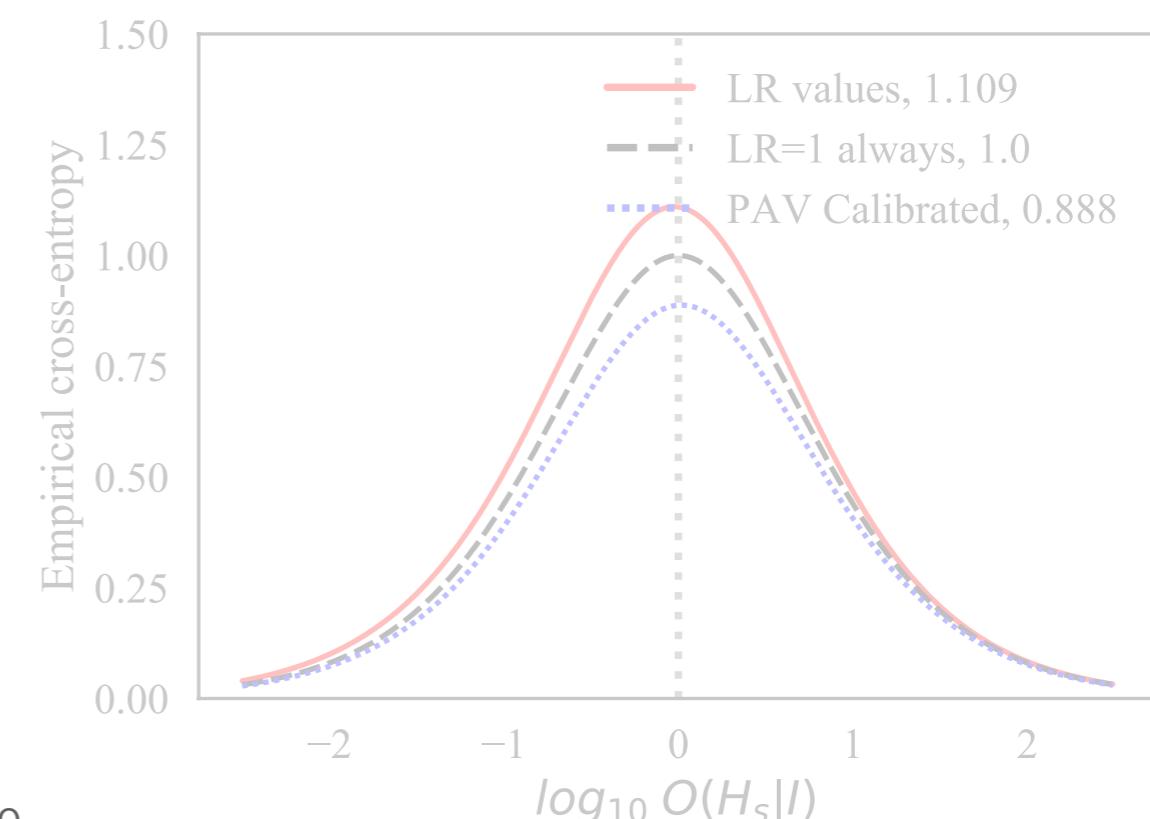


OC

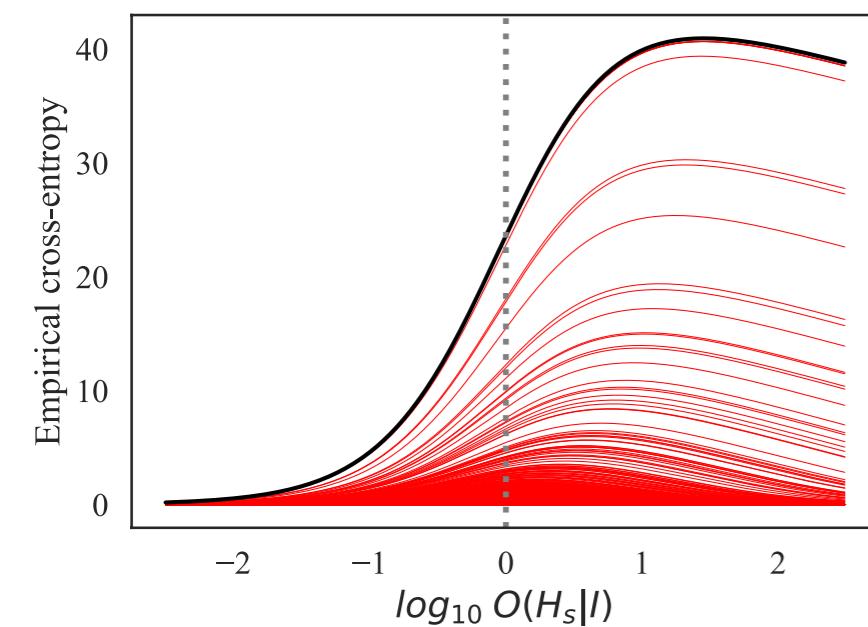
NY



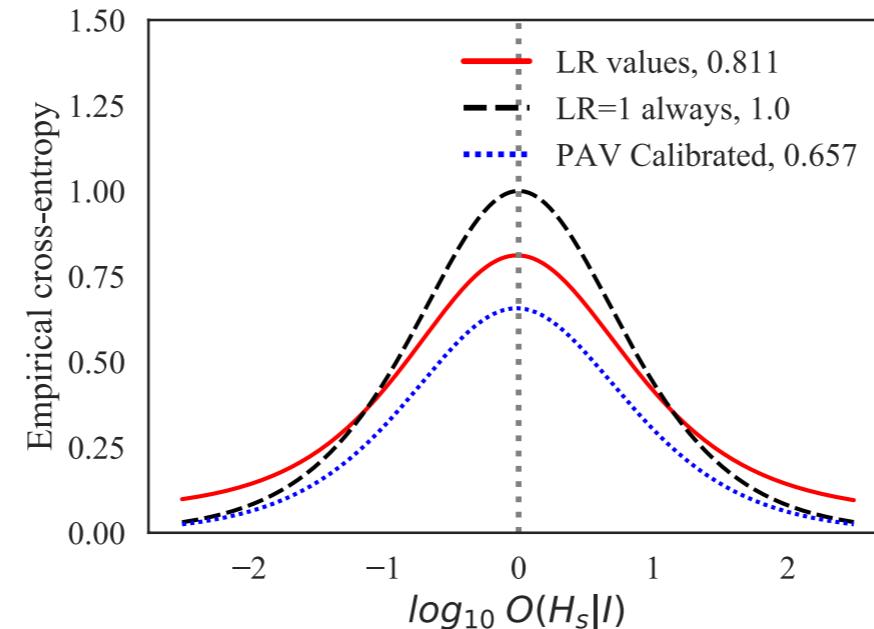
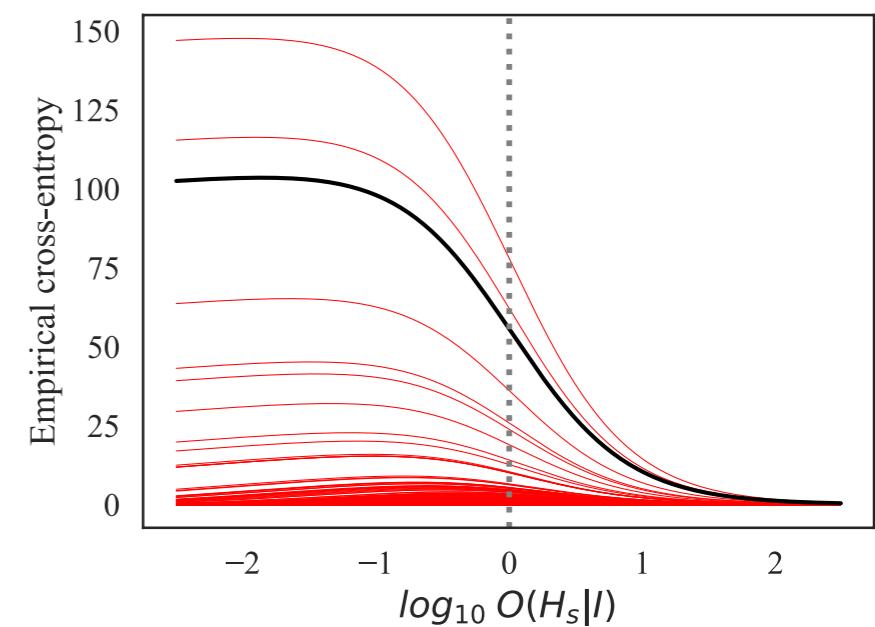
110



Error Analysis

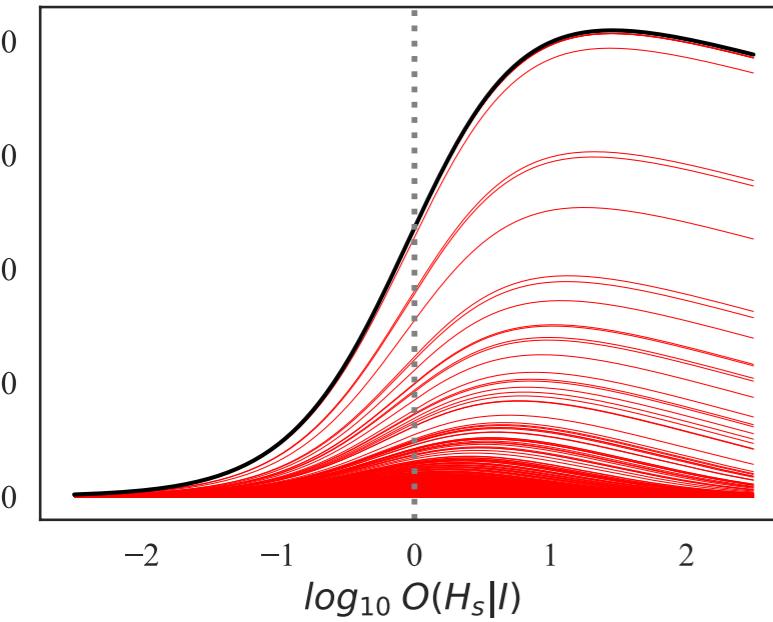
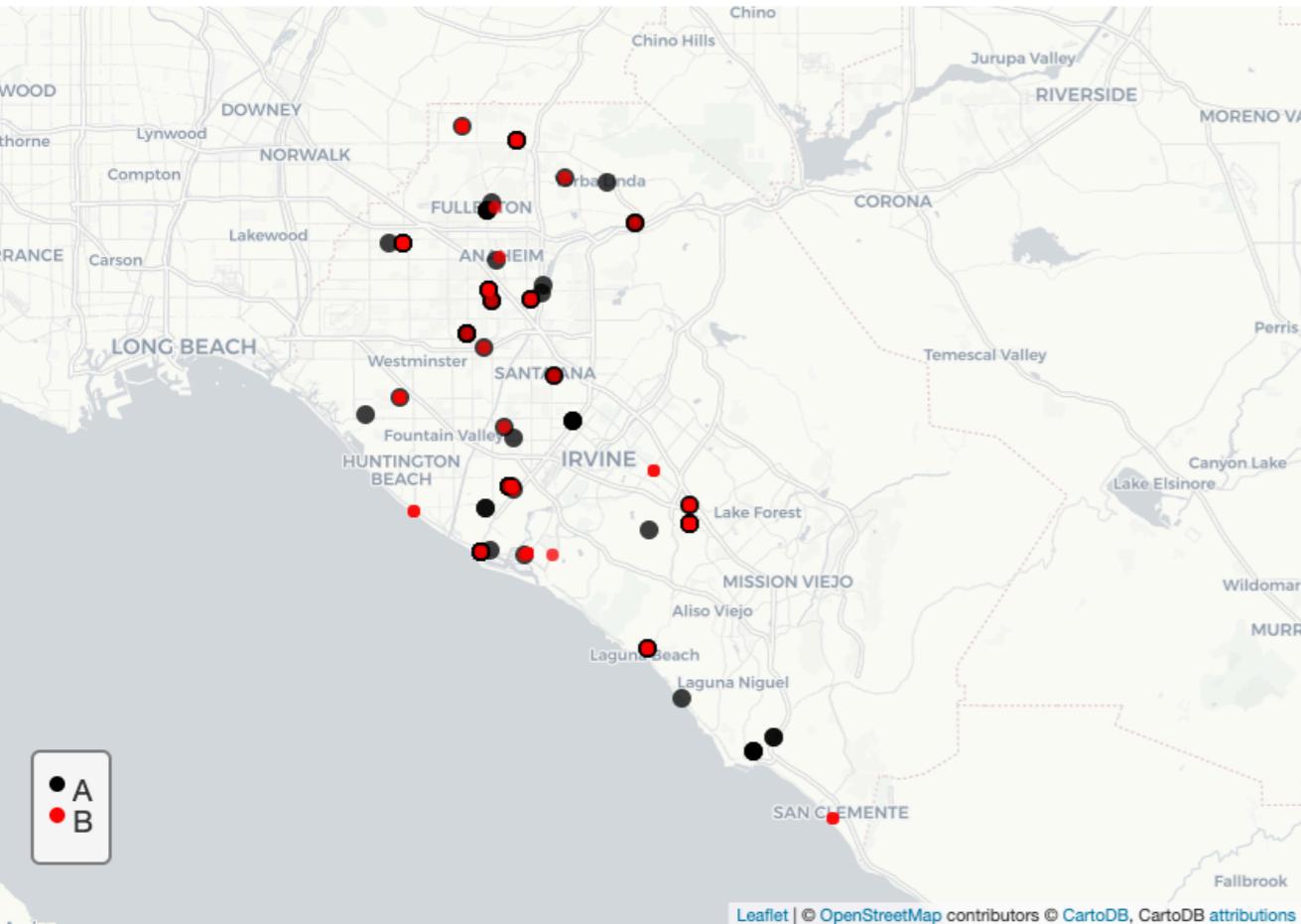


H_s true

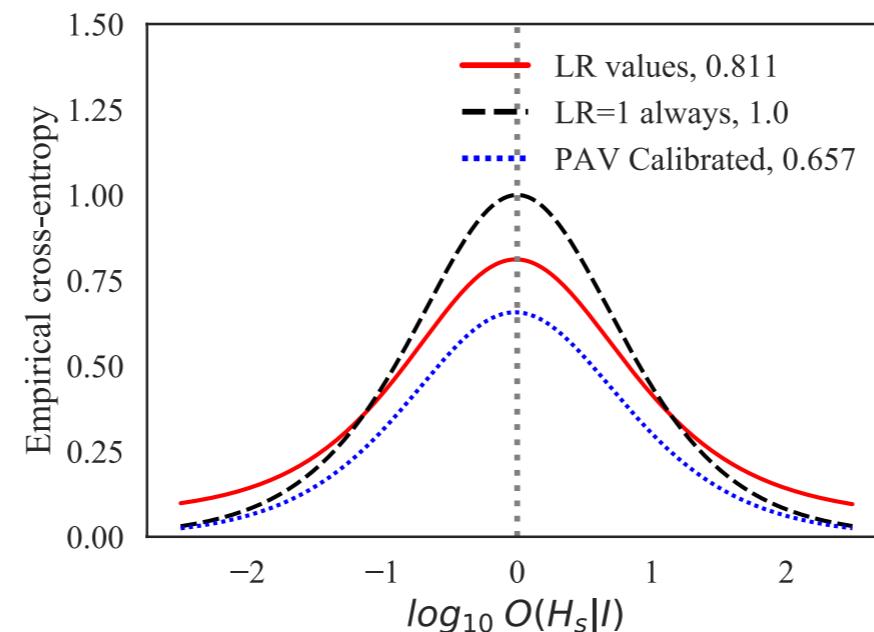
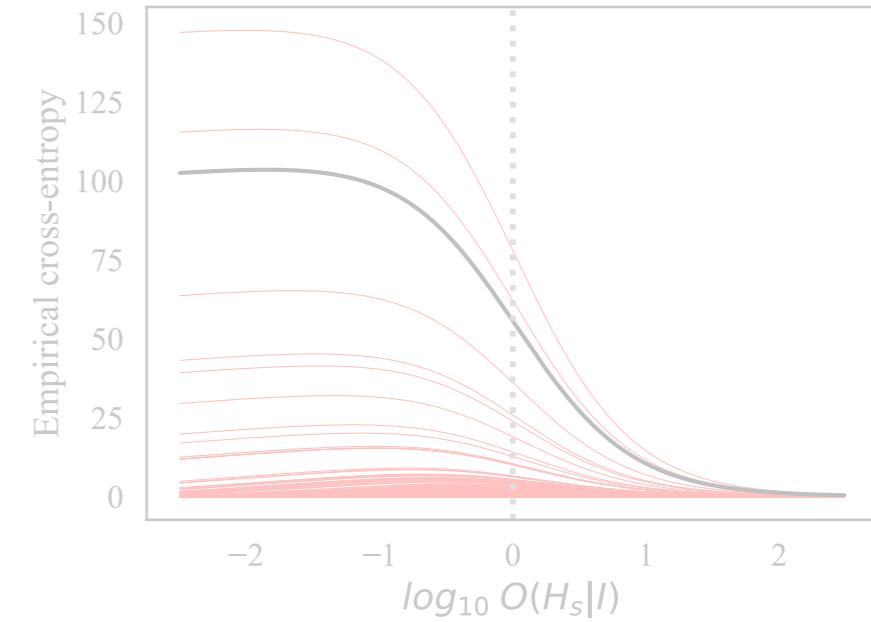


H_d true

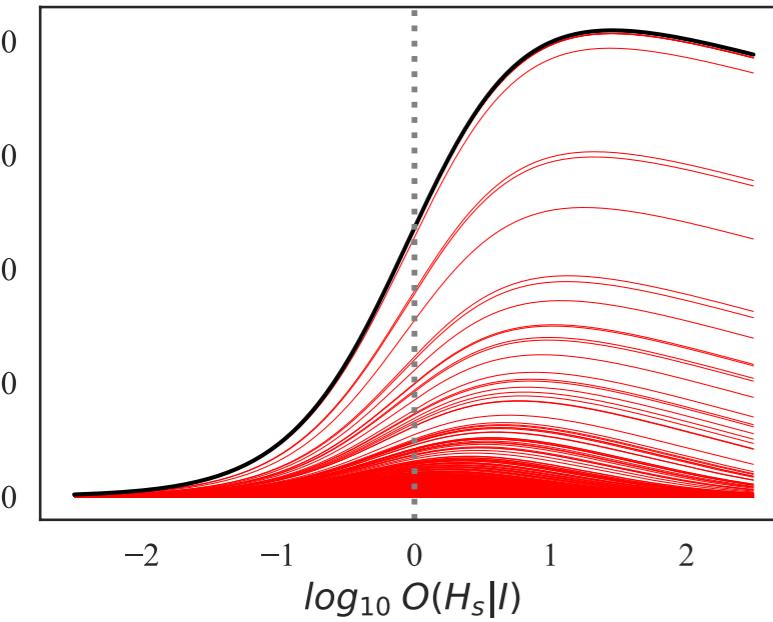
Empirical cross-entropy

 H_s true

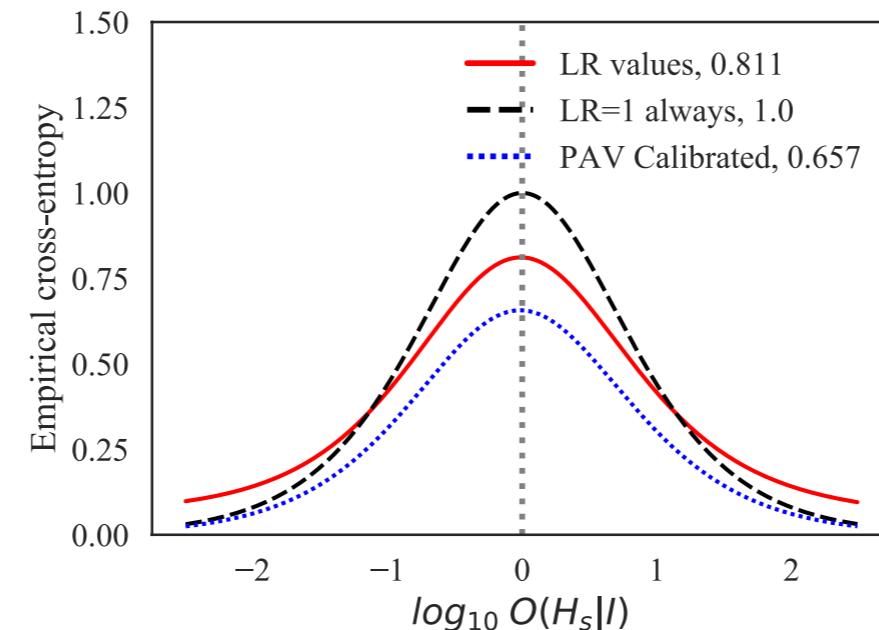
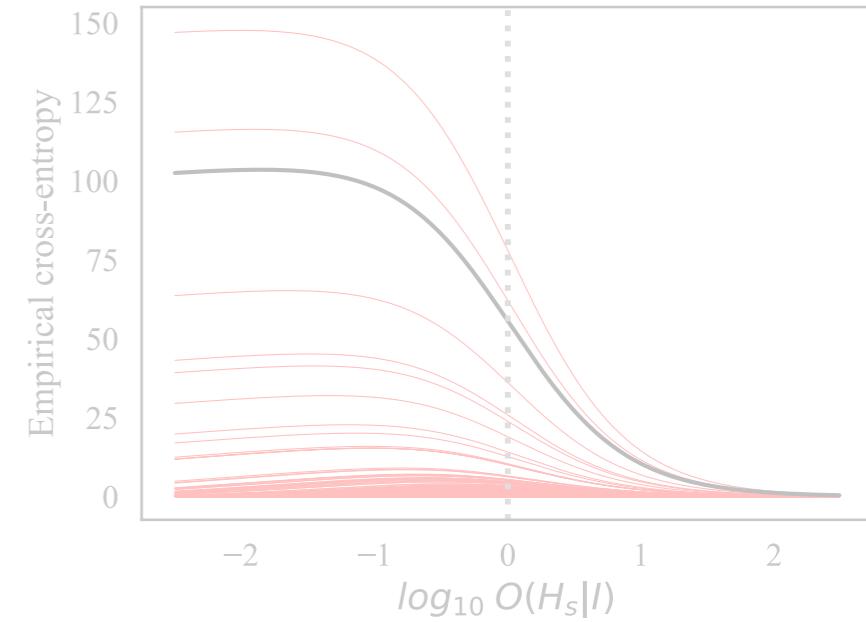
112

 H_d true

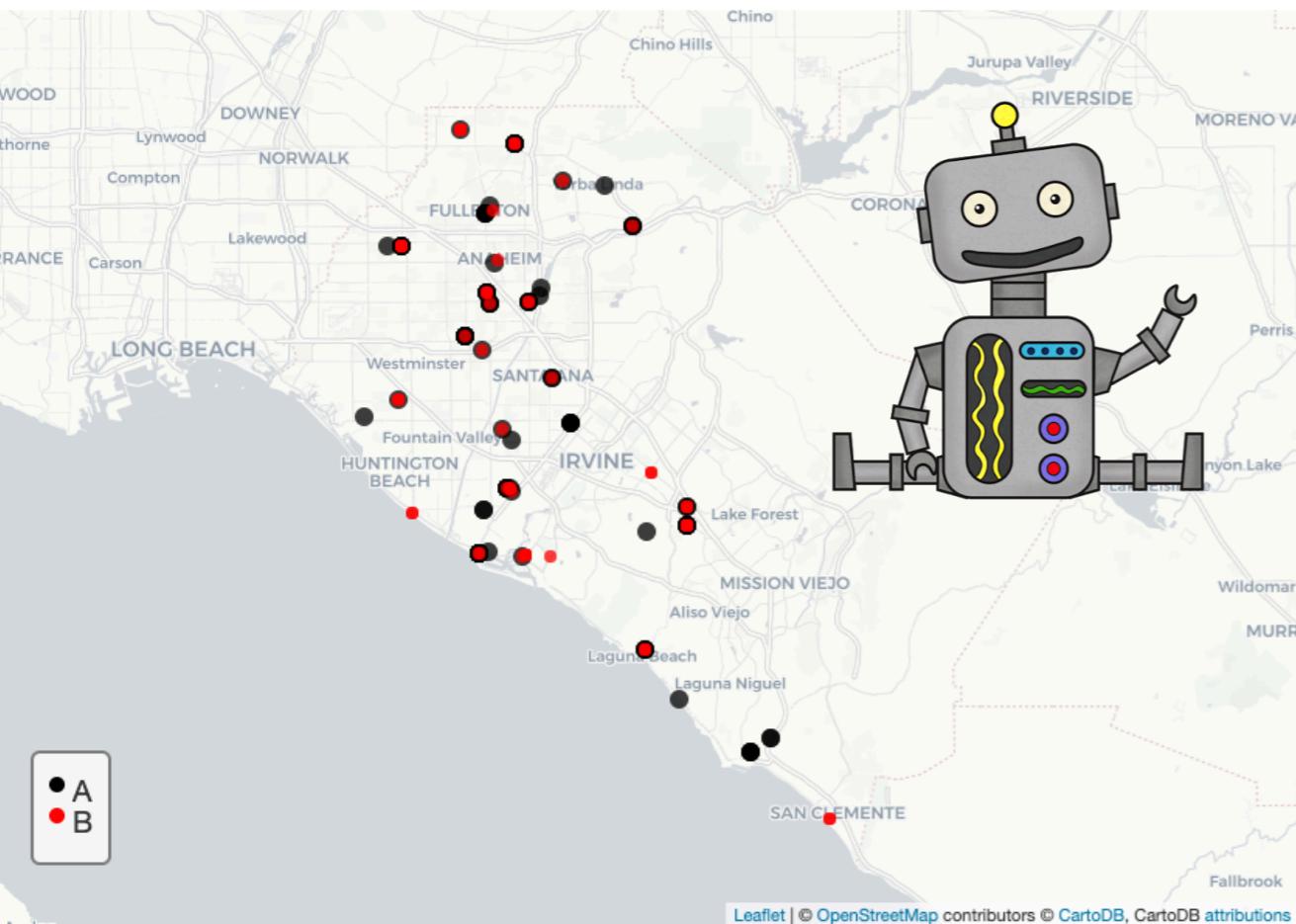
Empirical cross-entropy

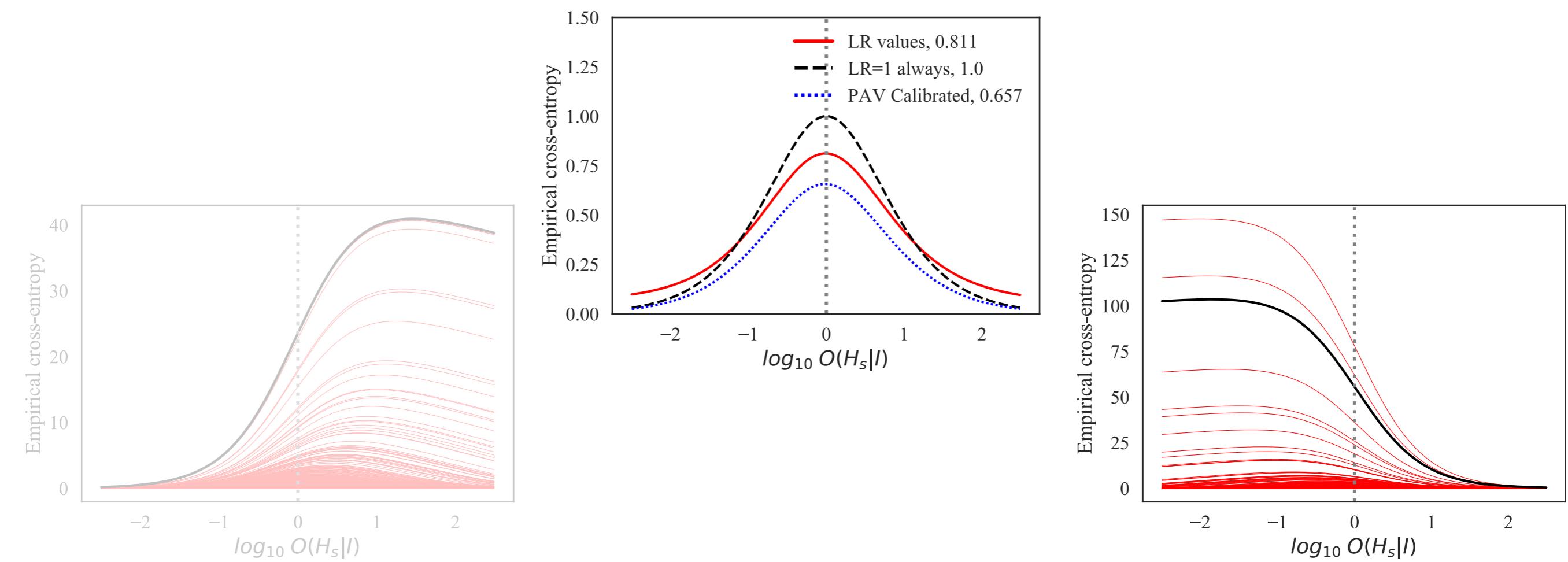


H_s true

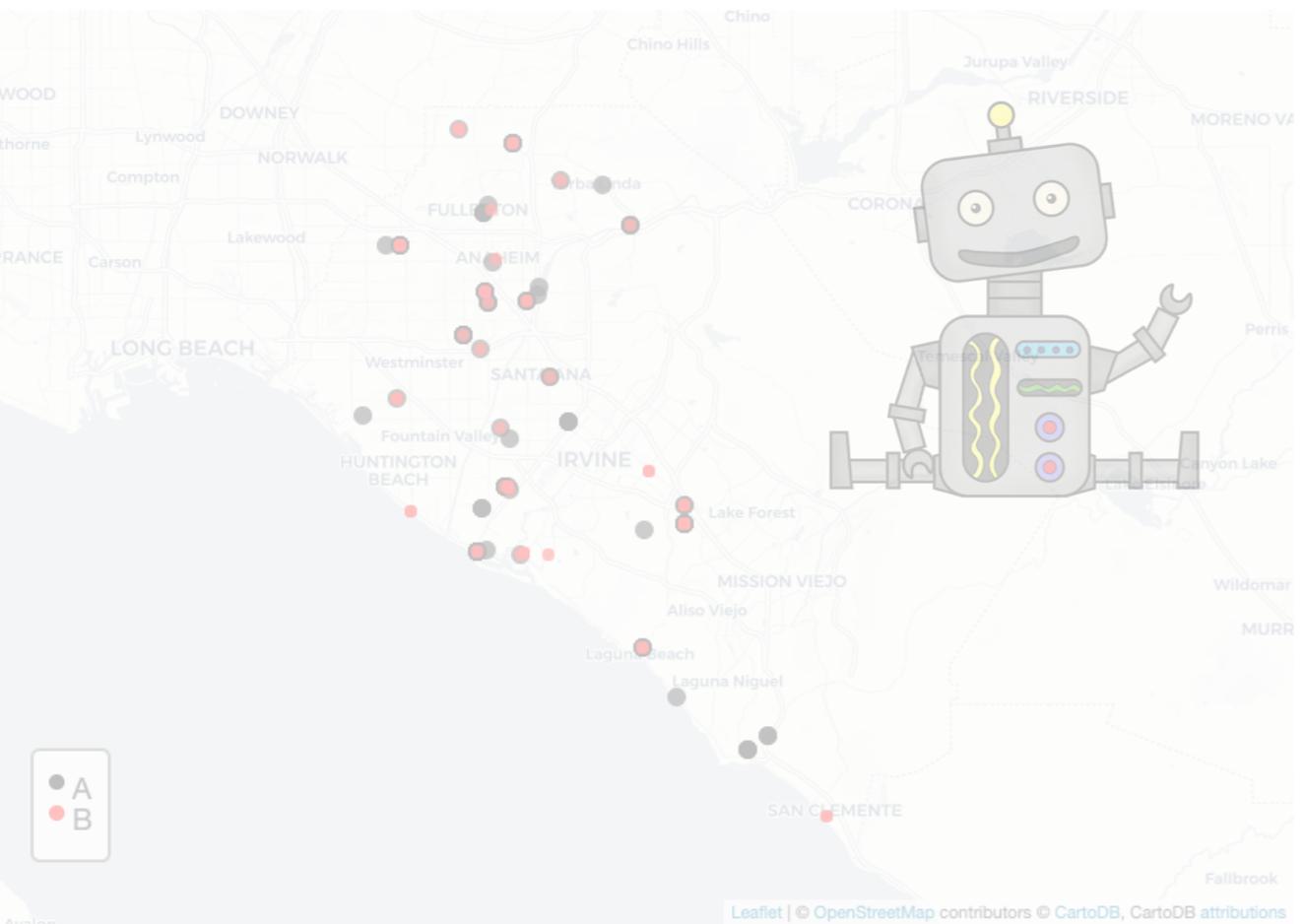


H_d true



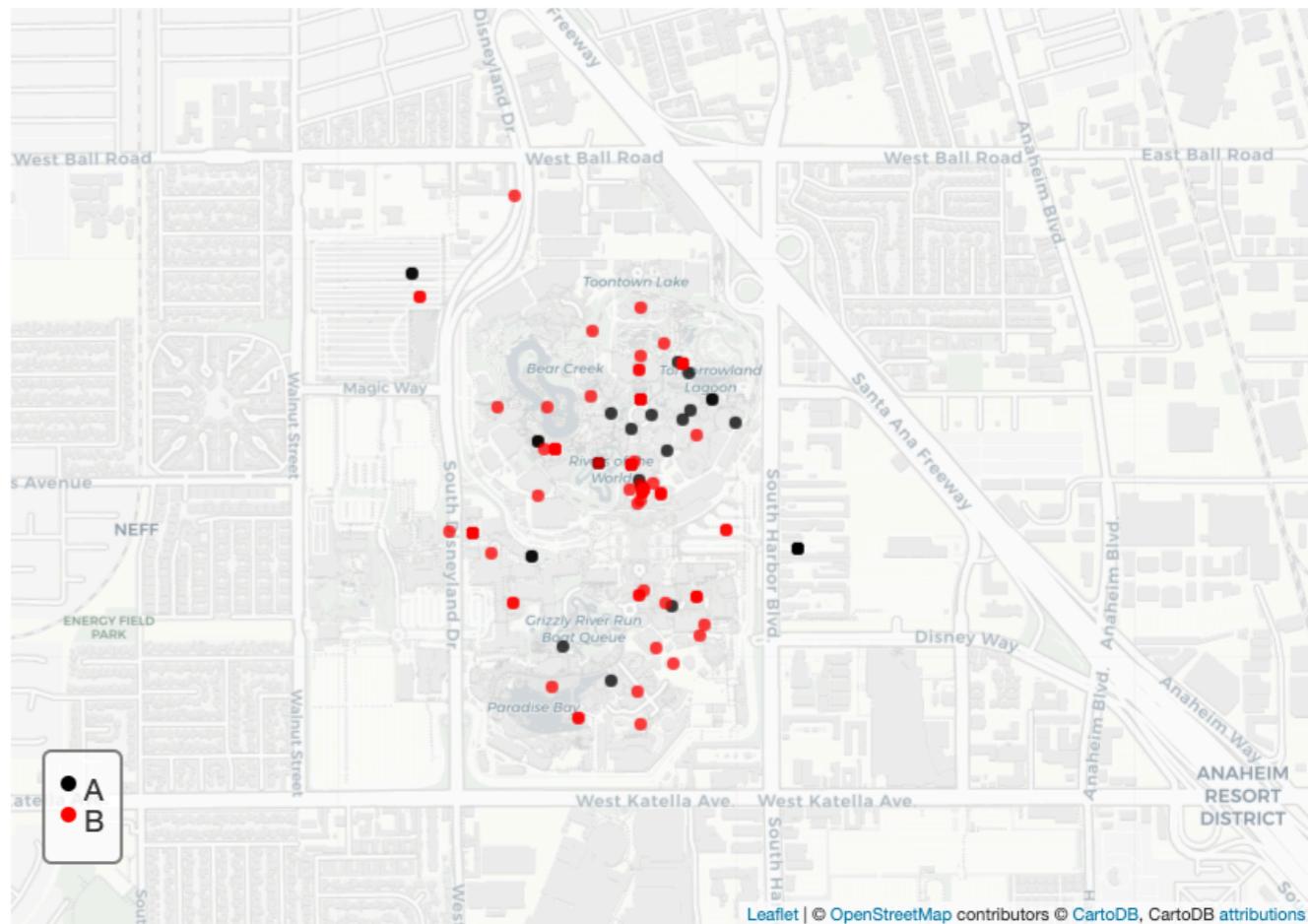


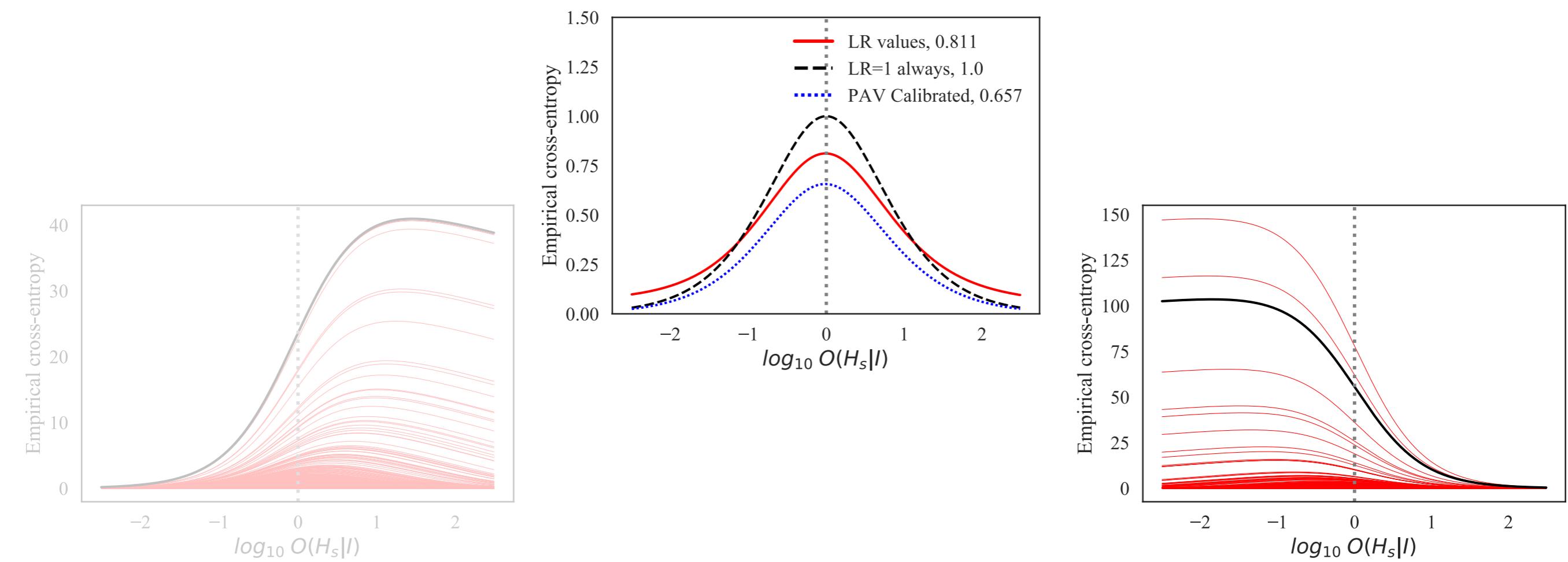
H_s true



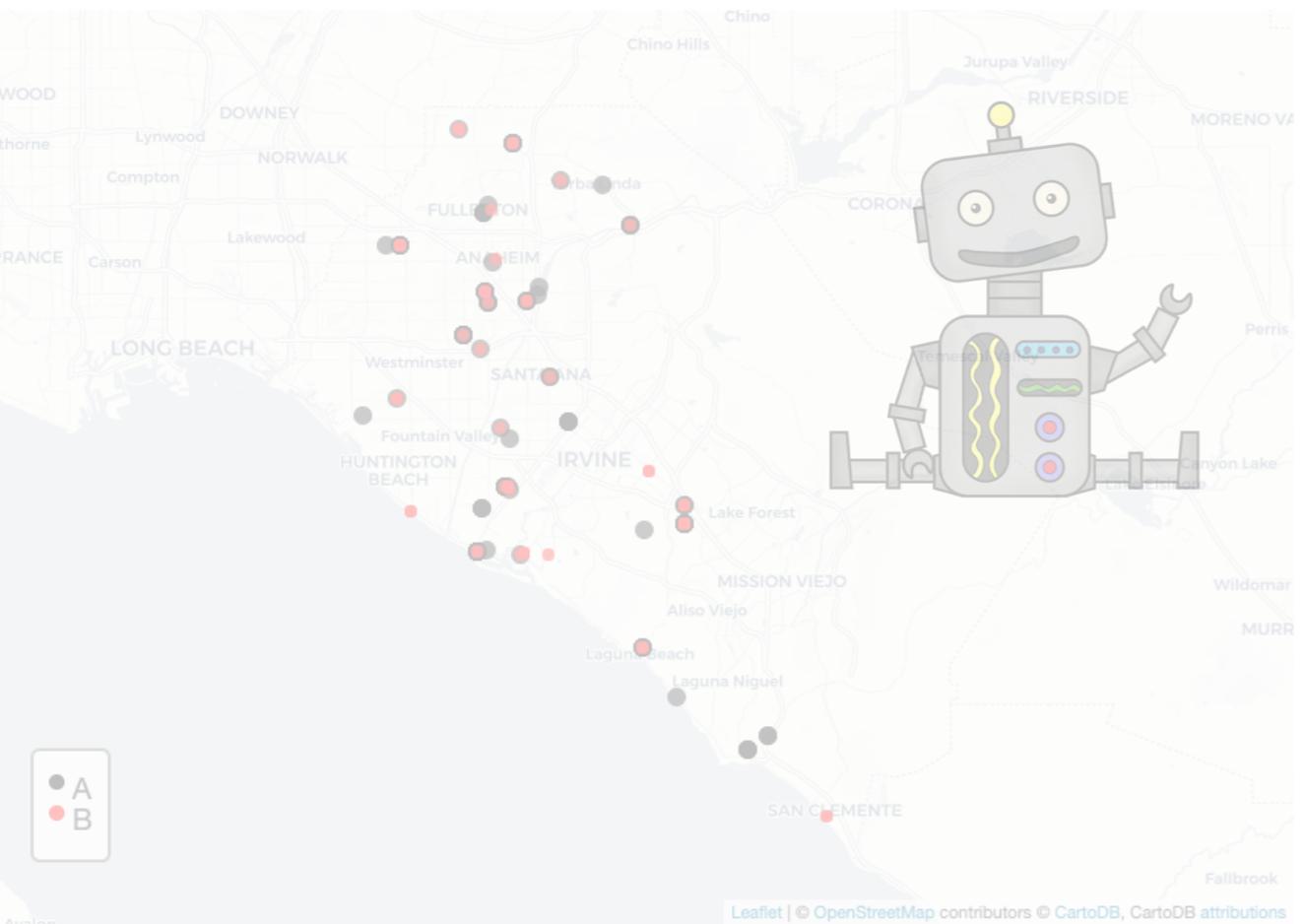
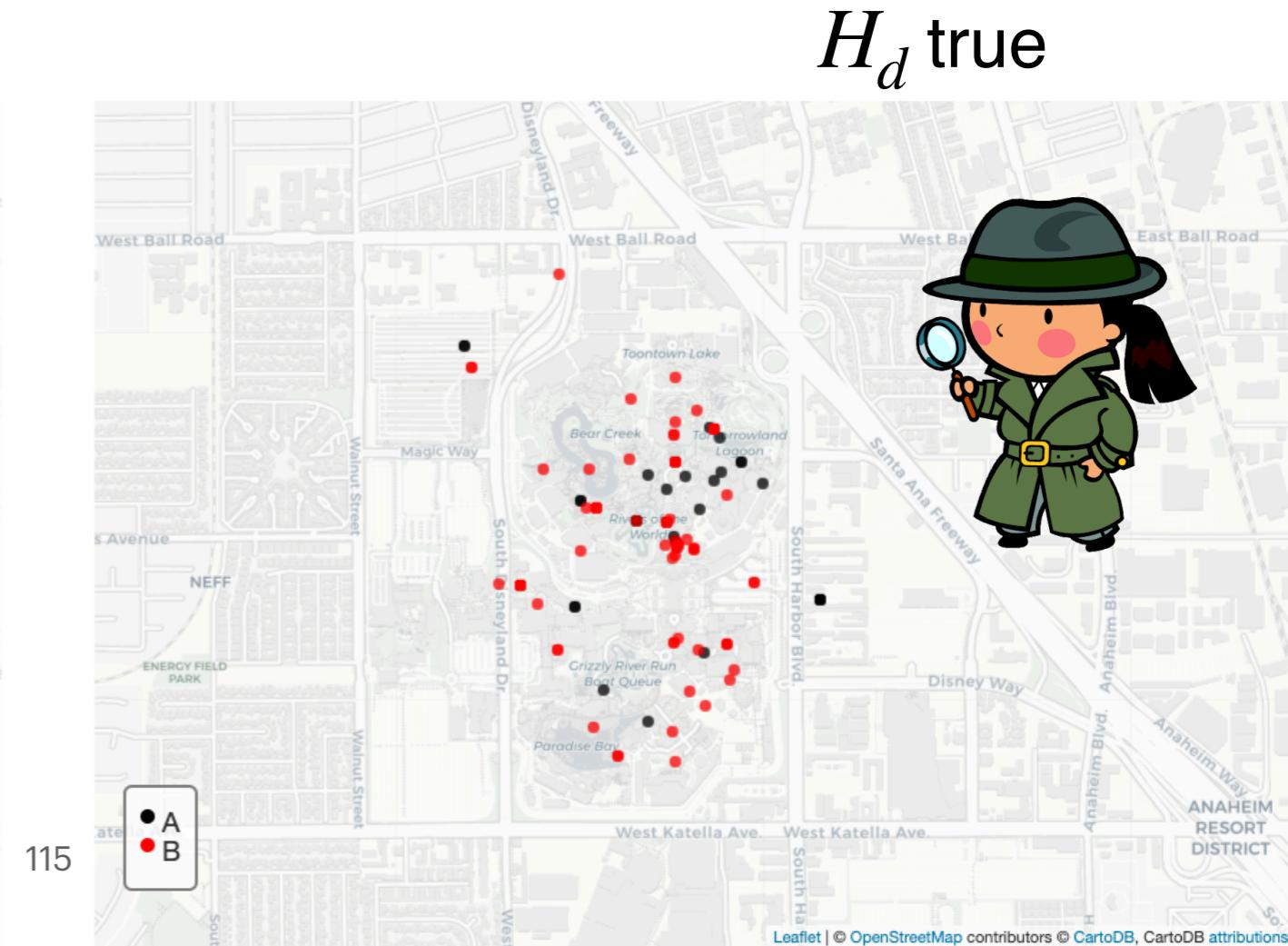
114

H_d true





H_s true



Future Directions and Summary

Future Directions

- **Reference Data:** Collect & share relevant digital data amongst law enforcement & researchers, e.g., start to build CODIS-like databases.
- **Assessment Techniques:** Classification performance & calibration are good ways to assess a method, but “misclassified” evidence complicates things...is there a systematic way to handle this?
- **Discovery:** Finding the most likely known source in a database given an unknown source sample...quickly.
- **Model Extensions:**
 - Spatio-temporal models
 - Incorporating event metadata

Summary

- **Statistical approaches** play a key role in the **forensic analysis** of a wide variety of evidence.
- **Digital evidence** is lagging behind other forensic disciplines.
- **Contributions presented:**
 - *Coincidental Match Probability*: Novel technique for quantifying strength of evidence
 - *Geolocated Event Data*: Framework for estimating LRs and investigation of appropriate score functions

Many Thanks to...

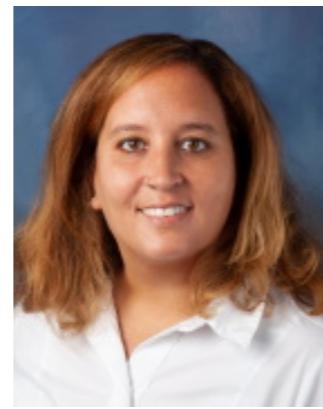
MY ADVISOR

Many Thanks to...

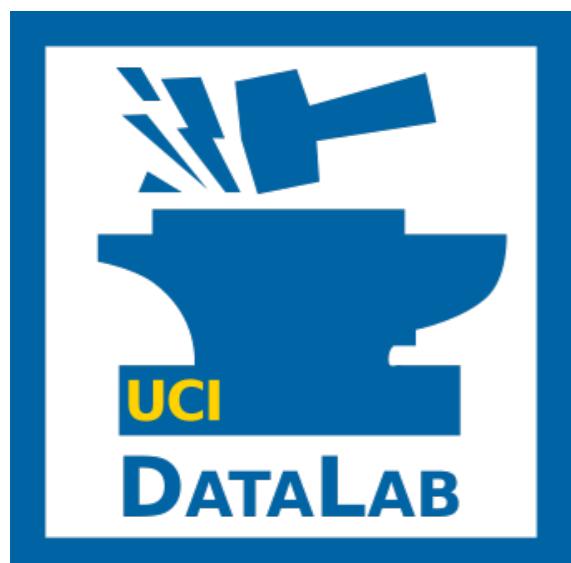
MY COMMITTEE

Many Thanks to...

MY COMMITTEE



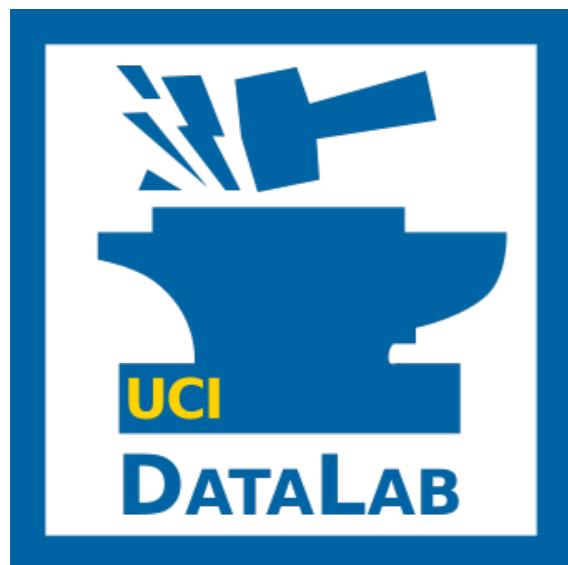
MY RESEARCH GROUP



Many Thanks to...

MY COMMITTEE

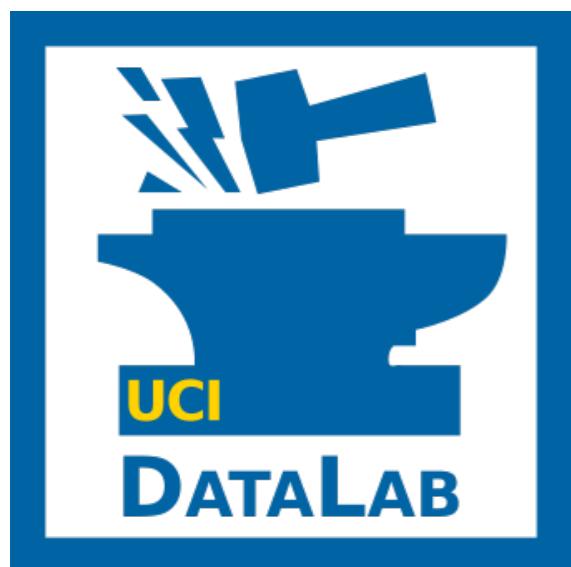
MY RESEARCH GROUP



Many Thanks to...

MY COMMITTEE

MY RESEARCH GROUP



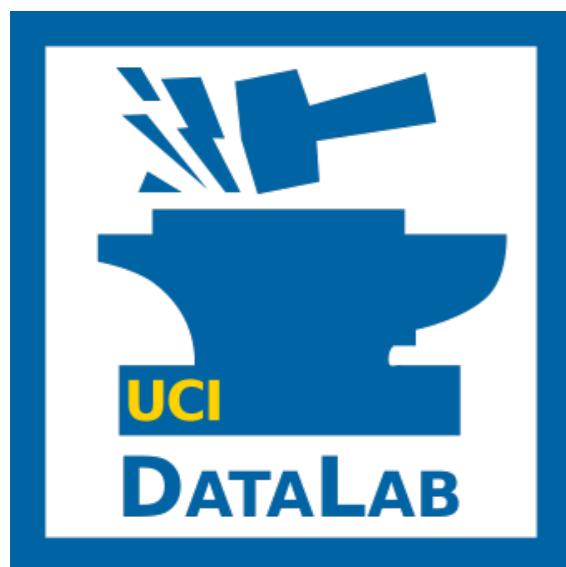
Many Thanks to...

MY COMMITTEE

OBSIDIAN

SOUTH DAKOTA
STATE UNIVERSITY

MY RESEARCH GROUP



NIST
National Institute of
Standards and Technology
U.S. Department of Commerce

 csafe
Center for Statistics and
Applications in Forensic Evidence

BREN:ICS
INFORMATION AND COMPUTER SCIENCES

UCIRVINE | UNIVERSITY
of CALIFORNIA

Questions

Appendix

Cross-
Entropy

$$\begin{aligned}\mathcal{U}_{Q||P}(H_s | E) &= -\mathbb{E}_{Q(E, H_s)} \log P(H_s | E) \\ &= -\sum_{k=0}^1 Q(H_s = k) \int q(e | H_s = k) \log P(H_s = k | e) de.\end{aligned}$$

$$\mathcal{U}_{Q||P}(H_s | E) = \mathcal{U}_Q(H_s | E) + D_{Q||P}(H_s | E)$$

Log Loss

$$L [Q(H_s | e), P(H_s | e)] = -Q(H_s | e) \log P(H_s | e) - (1 - Q(H_s | e)) \log(1 - P(H_s | e))$$

Risk

$$R(Q, P) = \mathbb{E}_{q(E | H_s)} L [Q(H_s | E), P(H_s | E)] = \int q(e | H_s) L [Q(H_s | e), P(H_s | e)] de$$

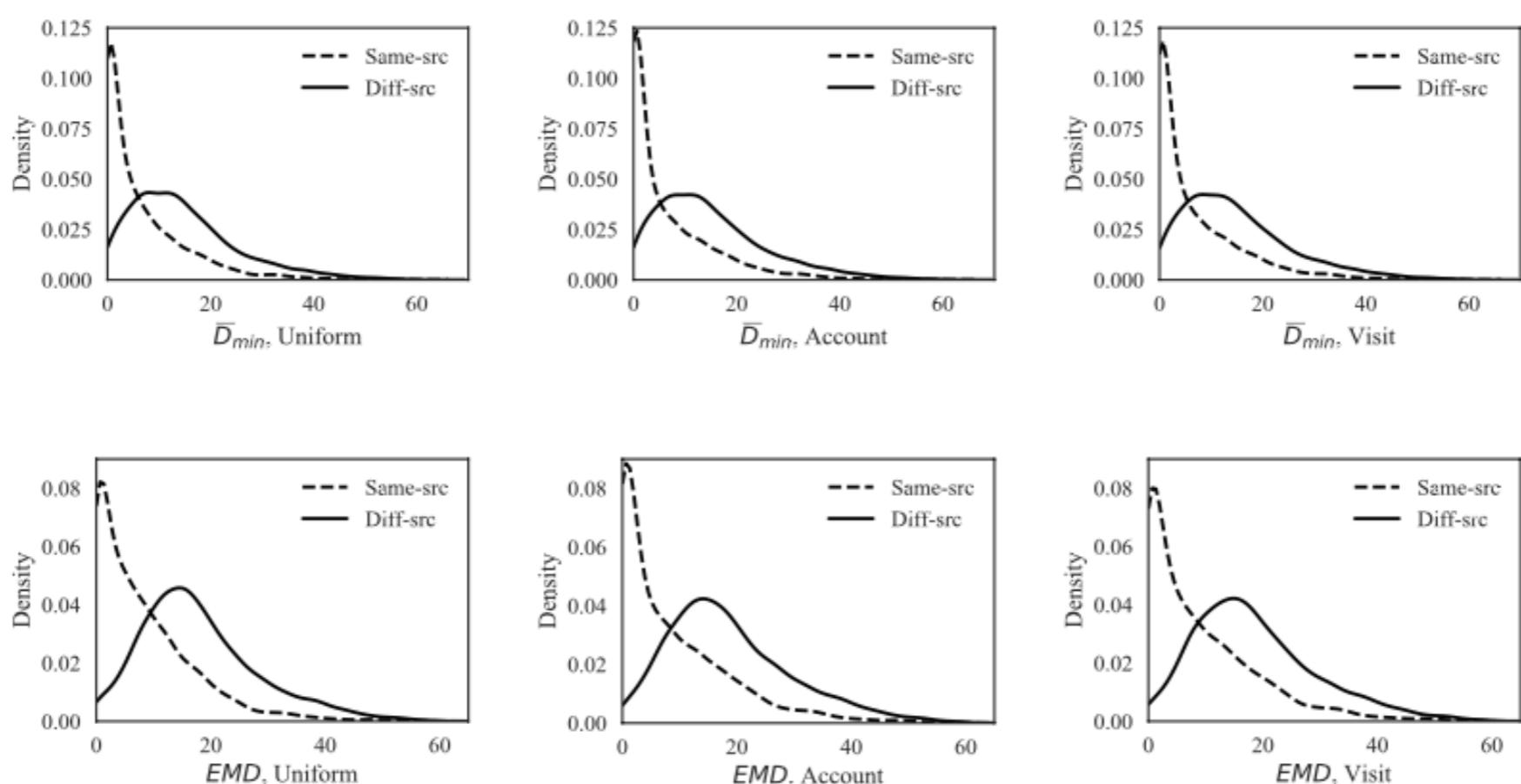
Bayes Risk

$$\begin{aligned}R_B(P) &= \sum_{k=0}^1 Q(H_s = k) \mathbb{E}_{q(E | H_s = k)} L [Q(H_s | e), P(H_s | e)] \\ &= -\sum_{k=0}^1 Q(H_s = k) \int q(e | H_s = k) \log P(H_s = k | e) de \\ &= \mathcal{U}_{Q||P}(\theta | E)\end{aligned}$$

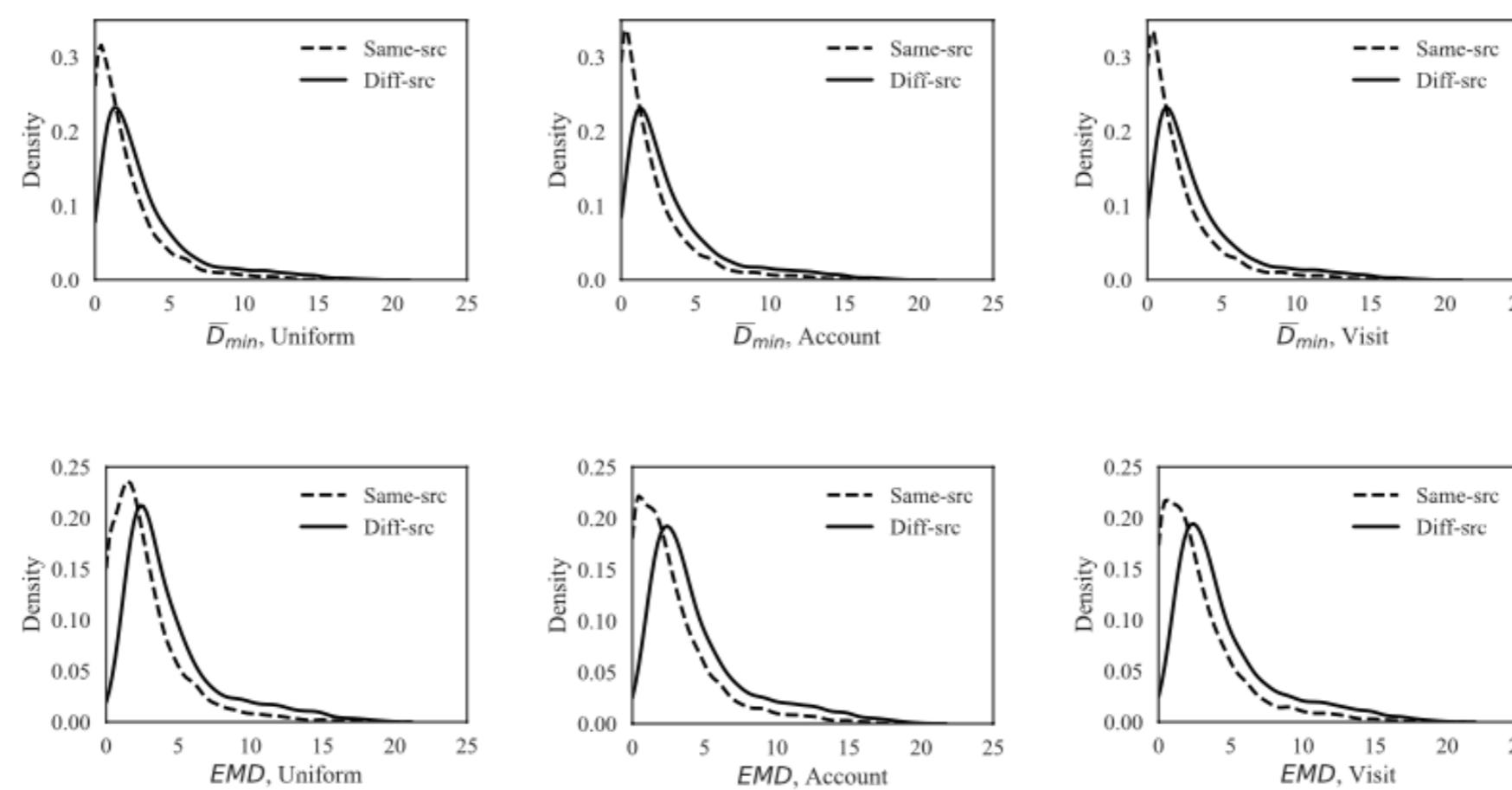
Empirical
Cross-Entropy

$$ECE = -\frac{P(H_s)}{N_s^*} \sum_{i \in \mathcal{D}_s^*} \log P(H_s | e_i) - \frac{1 - P(H_s)}{N_d^*} \sum_{j \in \mathcal{D}_d^*} \log(1 - P(H_s | e_j))$$

OC



NY



Region	Weight	TP@1	FP@1	AUC
OC	0.80	0.340	0.026	0.787
	$\alpha(n_a)$	0.380	0.038	0.845
	$\alpha(n_a \gamma, \rho, \phi)$	0.375	0.037	0.817
NY	0.80	0.251	0.067	0.711
	$\alpha(n_a)$	0.285	0.089	0.768
	$\alpha(n_a \gamma, \rho, \phi)$	0.282	0.088	0.734

LR

Region	Δ	Weights	TP@1	FP@1	AUC
OC	\bar{D}_{min}	Uniform	0.628	0.202	0.768
	\bar{D}_{min}	Account	0.610	0.171	0.774
	\bar{D}_{min}	Visit	0.611	0.180	0.768
	EMD	Uniform	0.654	0.197	0.790
	EMD	Account	0.614	0.162	0.783
	EMD	Visit	0.602	0.169	0.774
NY	\bar{D}_{min}	Uniform	0.508	0.287	0.656
	\bar{D}_{min}	Account	0.494	0.254	0.666
	\bar{D}_{min}	Visit	0.493	0.257	0.663
	EMD	Uniform	0.530	0.253	0.686
	EMD	Account	0.511	0.235	0.685
	EMD	Visit	0.504	0.234	0.679

SLR

Region	Δ	Weights	TP@0.05	TP@0.01	AUC
OC	\bar{D}_{min}	Uniform	0.389	0.187	0.771
	\bar{D}_{min}	Account	0.441	0.236	0.776
	\bar{D}_{min}	Visit	0.415	0.209	0.771
	EMD	Uniform	0.397	0.154	0.791
	EMD	Account	0.448	0.208	0.784
	EMD	Visit	0.425	0.182	0.775
NY	\bar{D}_{min}	Uniform	0.242	0.153	0.656
	\bar{D}_{min}	Account	0.269	0.186	0.667
	\bar{D}_{min}	Visit	0.264	0.179	0.665
	EMD	Uniform	0.265	0.139	0.687
	EMD	Account	0.283	0.161	0.686
	EMD	Visit	0.276	0.156	0.681

CMP

