

Spatial DNA: Measuring Similarity of Geolocation Data Sets

Christopher Galbraith & Padhraic Smyth; University of California, Irvine

Problem Statement

Consider a pair of user-generated event point patterns

$$M = (A, B) = \{(x_i, m(x_i)) : i = 1, \dots, n\}$$

where $x_i \in \mathbb{R}^d$ is the location and $m(x_i) \in \{A, B\}$ is the type of the i^{th} event. We want to quantify the likelihood that the pair was generated by the same source.

Measures of Association

Temporal Point Patterns

- Score functions using nearest neighbors: Compute summary statistics of marks for neighborhoods around randomly selected points in the pattern. We utilize the *coefficient of segregation* S .
- Score functions using inter-event times: Measure the time from each event in B to the closest event in A in either direction

$$\mathcal{T}_{BA} \equiv \{\tau_{BA,k} : k = 1, \dots, n_B\}$$

where $\tau_{BA,j} = \min_{j \in \{1, \dots, n_A\}} |x_{B,k} - x_{A,j}|$ and $x \in \mathbb{R}^+$

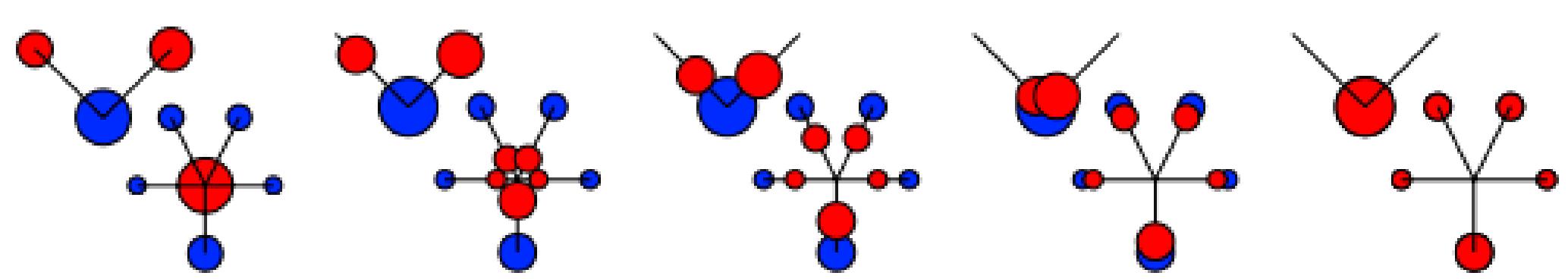
We compute either the mean $\bar{\mathcal{T}}_{BA}$ or median $\text{med}(\mathcal{T}_{BA})$.

Spatial Point Patterns

We utilize the *earth mover's distance* [] applied to the empirical distribution of point patterns A and B . Given the locations and weights of the points, EMD is the solution to an optimal transport problem for transforming points in one set (A) to those of another (B)

$$EMD(A, B) = \min_{F \in \mathbb{F}(A, B)} \sum_{j=1}^{n_A} \sum_{k=1}^{n_B} f_{jk} d_{jk}$$

where F is a member of the set of feasible flows from A to B , $\mathbb{F}(A, B)$, thus the optimization is constrained.



Population-based Approach [2]

- Two competing hypotheses:

$H_s : (A^*, B^*)$ came from the same source

$H_d : (A^*, B^*)$ came from different sources

- Use sample $M_i = (A_i, B_i)$ for $i = 1, \dots, N$ to estimate the score-based *likelihood ratio*

$$SLR_{\Delta} = \frac{g(\Delta(A^*, B^*) | H_s)}{g(\Delta(A^*, B^*) | H_d)}$$

Resampling Approach [3]

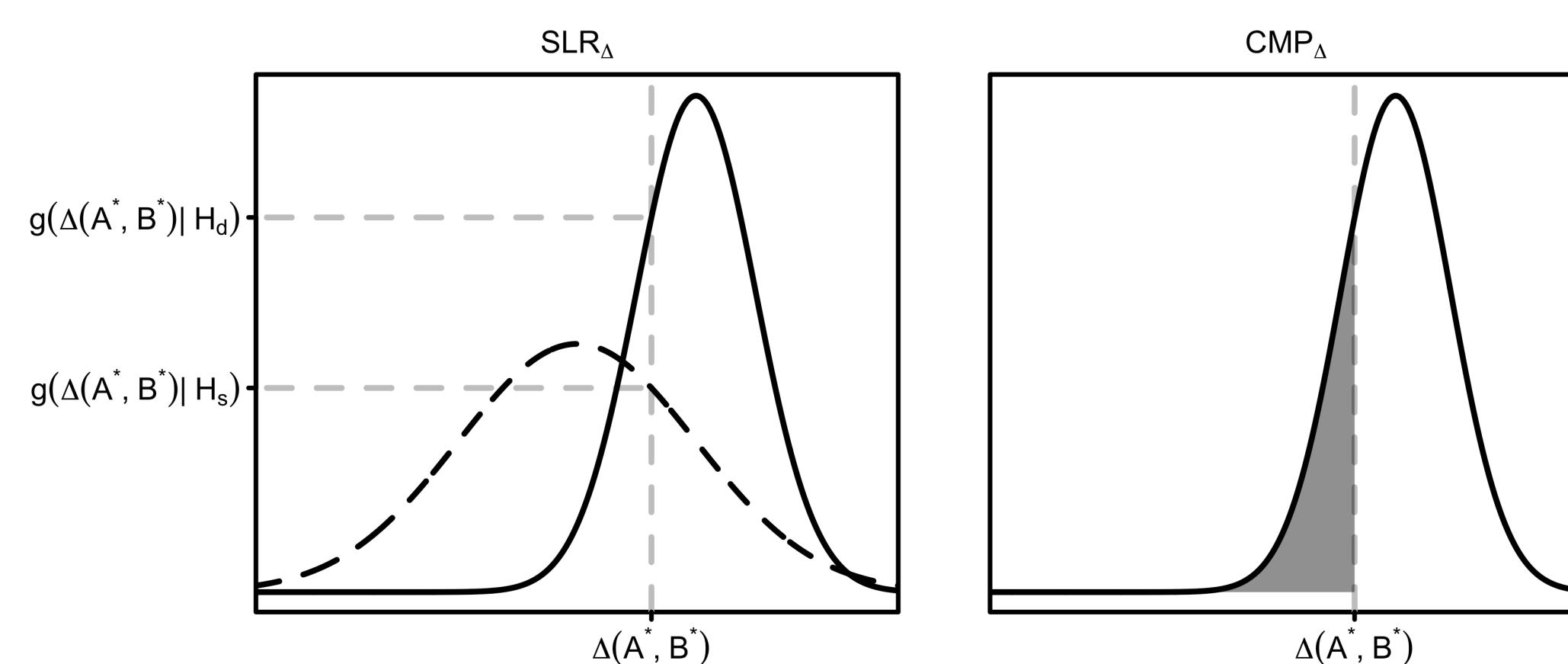
- Focus on the denominator of SLR_{Δ}
- Coincidental match probability*: probability that a different-source pair with observed score $\Delta(A^*, B^*)$ exhibits association by chance

$$CMP_{\Delta} = \Pr(\Delta(A, B) < \Delta(A^*, B^*) | H_d)$$

- Estimator: simulate different-source pairs to compute

$$\widehat{CMP}_{\Delta} = \frac{1}{n_{sim}} \sum_{i=1}^{n_{sim}} \mathbb{I}[\Delta(A^{(i)}, B^{(i)}) < \Delta(A^*, B^*)]$$

Comparison of Approaches



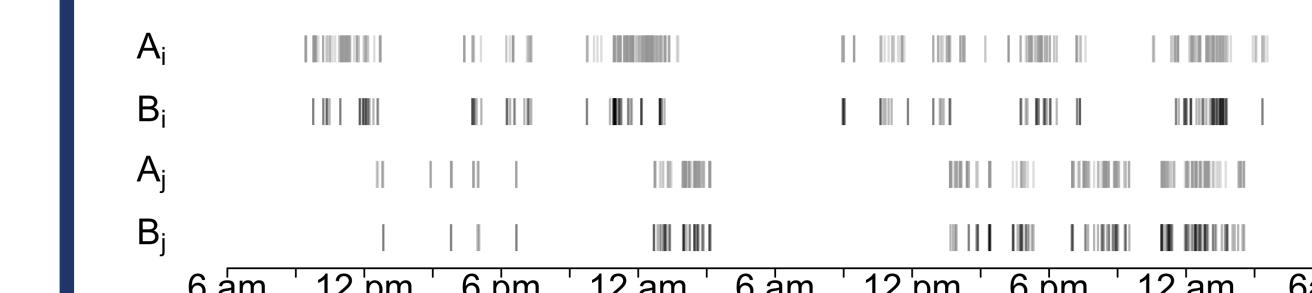
References

- Scott Cohen. *Finding color and shape patterns in images*. Number 1620. Stanford University, Department of Computer Science, 1999.
- Christopher Galbraith and Padhraic Smyth. Analyzing user-event data using score-based likelihood ratios with marked point processes. *Digital Investigation*, 22:S106–S114, 2017.
- Christopher Galbraith, Padhraic Smyth, and Hal S. Stern. Quantifying the association between discrete event time series with applications to digital forensics. *Submitted to J. R. Stat. Soc. A*, 2019.
- Moshe Lichman. *Context-Based Smoothing for Personalized Prediction Models*. UC Irvine, 2017.

Temporal Applications

UCI Student Data

Marks correspond to user-generated events on different domains collected by browser logging software.



Δ	TP@1	FP@1	AUC
Segregation (S)	0.945	0.031	0.992
Mean IET	0.964	0.029	0.996
Median IET	0.964	0.085	0.992

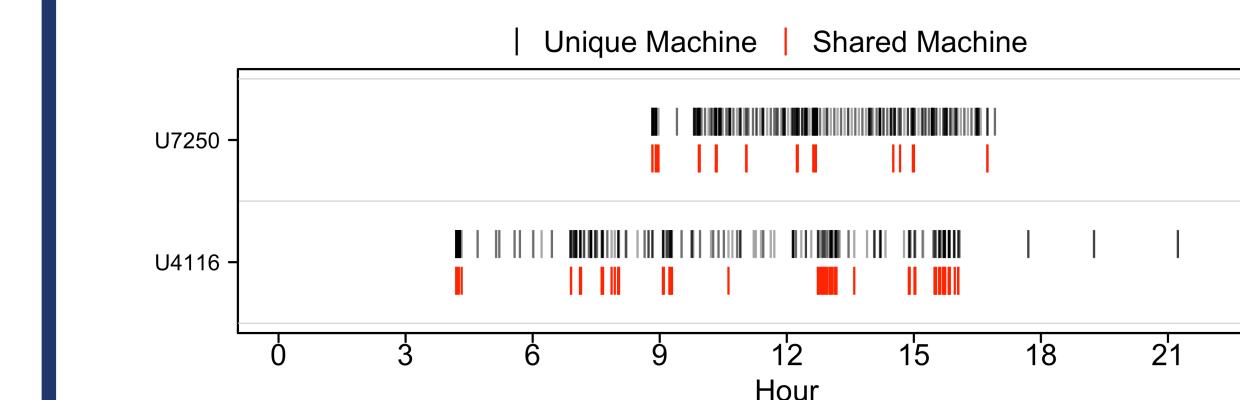
Performance of a classifier based on \widehat{SLR}_{Δ}

Δ	TP@.05	FP@.05	TP@.001	FP@.001	AUC
Mean IET	1.000	0.036	0.982	0.002	0.999
Median IET	1.000	0.176	1.000	0.015	0.992

Performance of a classifier based on \widehat{CMP}_{Δ}

LANL Authentication Data

Marks correspond to logins on different computers in the Los Alamos National Laboratory.

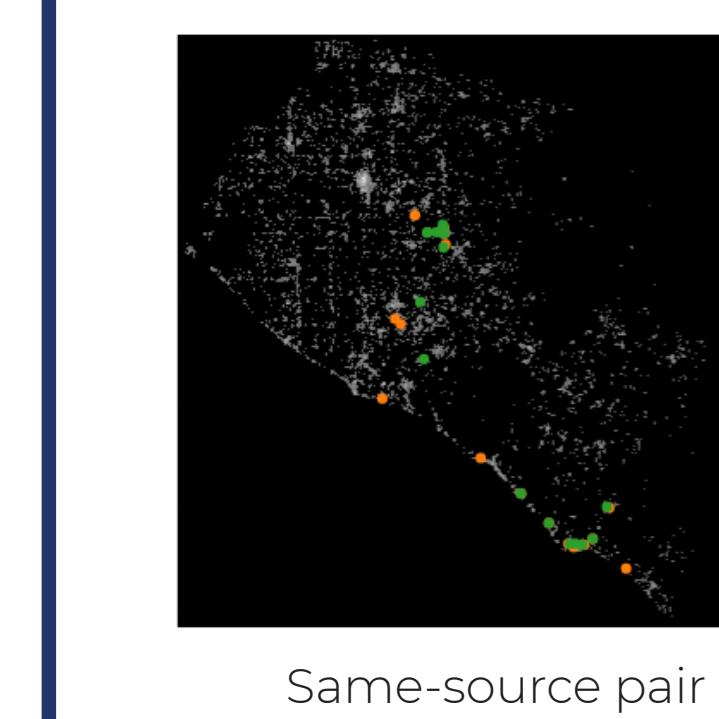
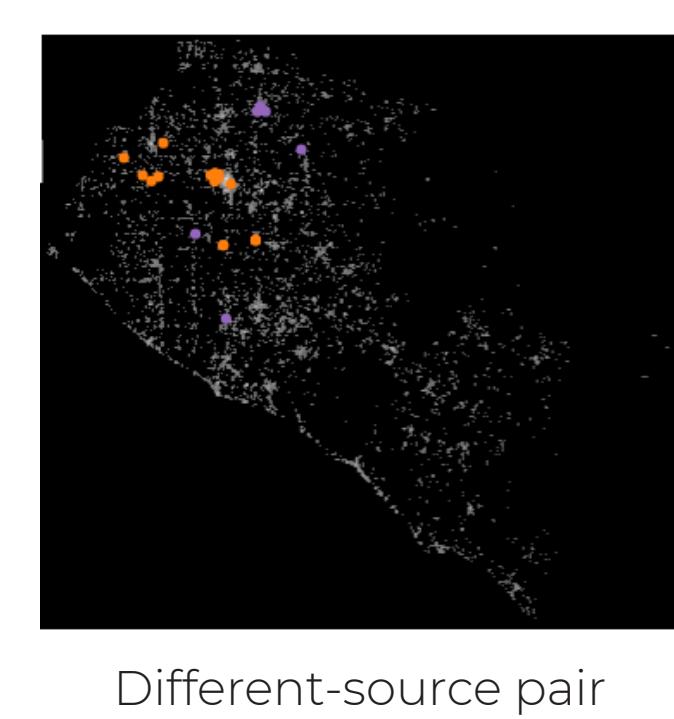


Match	Unique	Shared	S	Mean IET	Median IET
Y	U4116	U4116	0.000	0.000	0.000
	U7250	U7250	0.000	0.000	0.000
N	U4116	U7250	0.952	0.197	0.637
	U7250	U4116	0.333	0.545	0.266

\widehat{CMP}_{Δ}

Spatial Application

- Geolocated event data collected from Twitter users in southern California in July and August 2013
- Filtered to “visits” (grouped nearby tweets within an hour window as one effective event).
 - Population: 546k visits, 103k users
 - Point pattern: 28k visits; 223 users with at least 20 visits in successive months
- Geoparcel data collected from the Southern California Association of Government



Δ	TP@.05	FP@.05	TP@.001	FP@.001	AUC
Mean IED	0.441	0.008	0.257	0.004	0.931
Median IED	0.230	0.004	0.153	0.004	0.822
EMD	0.734	0.028	0.423	0.004	0.948

Performance of a classifier based on \widehat{CMP}_{Δ} using all same-source pairs and a random sample of 250 different-source pairs.

